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ABSTRACT

A preprocessor is designed to extract a set of features
that enhance natural clustering by removing extraneous
iaforration. The design removes time shift and scale
dependence by taking advantage of invariant properties of a
Fourier transform followed by a Mellin transform. The
preprocessor is realized using an FFT and a Mellin
transform with a conventional error correction term. The
error term proves to be 1indeterminate, but the error’s
bound is 1identified as the envelope for Mellin correction
terms. Properties of the Mellin transform are employed to
modify the signal so that the error correcting is no longer
required. The resulting algorithms are tested with
variously scaled inputs for which closed form solutions are
known. With a verified wmodification ia place, the
preprocessor produces features that are 1invariant to
shifting aad scaliag, while retaining enough iaformation to

classify canonic shapes. A method of improving performance

is introduced.
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I. INTRODUCTION AND BACKGROUND

Pattern classificatioa 1is the assignrent of a physical
nbject or event to one of several prespecified catagories
and is the result of an incorplete theory of perception.
Although many transducers are avallable for converting
light, sound, terperature, reflected radar signals, etc.,
to electrical signals, the ability of machines to perceive
cr to recognize their environment remains very limited. In
the structured world of communcations engineering, signals
are designed to ©be detectadble and differentiadle. A much
more difficult problem presents 1itself when sensing an
environment through a transducer and recognizing or even
classifying the elements of that enviroament oa the sensed
characteristics of the transducer’s electrical output.
Pattern recognition can be coasidered a complex
cormunications prodler (for example, attempting to teach a
machine to decode signals encoded by nature). It s
possible to alter the transducer’s output to facilitate
object classification, but determinicg how to alter that
output 1is not a sirple task. The main elememts of a
classification system is shown in figure 1 [1]. The
traasducer seases, actively or passively, a set of
characteristics velonging to the objlect. These
characteristics can never be a complete description of an
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object, but represent, hopefully, enough 4information to
classify the object as belonging to one of a number of
classes. For instance, temperature is a characteristic of
the object and a class, but this feature is of little value
unless 1t differs 1in somre way from objects beloaging to
other classes, while the set mnst include characteristics
that are common among that <class. The preprocessor (or
feature extractor) aims to reduce the data by measuring or
quantifying <certain properties that distinguish the sensed
object as belonging to ore class and aot to others. This
can be done by discerning key features or using the imput
to generate another set of features optimized by some rule.
The values of each of these features is then passed to the
classifier, which evaluates these features to assign the

object to a class.

With varied success, machine pattern classification has
been applied to a large range of problems/disciplines.
Fields where it is particularly comron include optical
imagery, acoustic signal processing, radiology, radio
astronomy, and electronic warfare, to name a few. Vork 1in
many of these fields was reviewed during the development of
this thesis and the results derived and demonstrated here
may, in tura, be applicable to the field in general. This
effort has been directed toward designing a preprocessor to

produce a set of features that are invariaat to ianformation
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known to be superfluous to classification, but that retain
eaough information to classify an object., The object has
Peen sensed by a transducer and has been represented as an
erpirically derived, univariate tire series. Such a series
would be the form of data available from range only radar
retura which 1is specifically what the opreprocessor 1is
designed to handle. Returning to figure 1, the object has
an infinite set of characteristics (here portrayed as an
infinite series of discrete values). The
traasducer/receiver has collected some characteristics of
the target objective 1in the presence of nolise. This
inforration is relayed as a set of discrete samrples (hi)
from a band limited signal. The preprncessor is desigrned to
determine and code revelent 4information (Hj) for the
classifier. If this task was done well, classification
becores a trivial oproblem. On the other haad, if the
classifier becores ideal (capable of resolving an infinite
aurber of characteristics in noise) the preprocessor design
begins to 1lonok 1like a wire. The distinction between the
preprocessor aad the classifier is arbitrary from an
analytical point of view. When designing a classification
system functionally, a difference is enforced, The
classifier has 1llttle concern for how the features are
developed, but seeks to efficiently use those provided to

guess the class of the target object. The preprocessor is

11




probler dependent, needing to produce an optiral set of

features, Ej, from the seased data hi.

A. FEATURE EXTRACTION

For the purposes of this paper, two generic approaches
to feature extraction are defined. The first, a
classification approach, was descridbed above. The second, a
descriptive approach, tries to define the object in terms
of the otjects” structural features. This system might
recognize a car, for example, by breaking up the visual
picture 1into canonic shapes, and comparing this to
previously specified canenic <class models. The perceived
structure of the physical object is maintained and <should
reflect the structure of the object itself. This approach
could bde robust to temporary changes in the object itself.
In the car exarple, knowing that at one end of the car the
trunk can be opened or closed allows the device to take
this factor 1into account. Another important advantage to
descriptive techniques is that the class characteristics
may be entered or specified without collecting actual
transducer generated data to train the rachine.
Uafortunately, the problem of designing a machine to
analyse a visual scene to produce a structural description
has proved to be quite difficult. Object description from a

univariate tire series is even more difficult, and if the

12
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radiation sensed by the transducer is not from the visual
spectrum, the task rapldly approaches the impossible. For
these reasons the approach taken was the élassification
approach (to reduce the signal to a set of orthogonal
features that do not uniquely reflect the structure of the
object, dut do retain sufficieat information to classify

the obd ject).

This paper excludes a detailed description of the
transducer specification. The prodlem of the classifier
itself i1s viewed as one of partitioning the feature space
(BJ) 1into reglons; one region for each category. Ideally.
this partitioning should be arranged so that none of the
decisions are ever wrong. When this cannot be realized, at
least the probabdility of error should bve minimized or the
average cost of errors minimized. The problem is one within
statistical decision theory. Znowledge of the object
classes (the transducer and the classifier) are required to
design the preprocessor, which is the topic of this thesis.
The preprocessor designed and built here generates features
from a range only radar video signal. These features are
used by a general Bayesian 1learning classifier. The
supervised learning general Bayeslian classifier approaches
the problem by taking a series of incoming sets of features
lateled as to their class. From the data, an a posteriori

density is computed. Each successive set of training data

13




is used to refine the densities” statistics. dhen the
classifier has beea trained oa N classes, the features are
rodified to separate the class volures in an optiral way
and to reduce the number of features to one less than the
number of possible classes. The feature vectors of class
rembers are clustered about a simplex point aand 1likely
boundaries are set up allowing classification of the object
as ‘telonging to one of the classes, or of an unkown class.
An N simplex is a collection of N gpoints 1in (N-1) space
where the distance between any two of the points is equal
to the distance between aay other two. Thus a three «class
problem transformed into a three simplex in a two
dimensional plane produces clusteriag of the three class’s
about the vertices of an equilateral triangle. The simplex
coordinates are the reduced feature vectors, generalized
from the training data. In a controlled, simple problem the
classifier works well, but whea encountering real problems
sne class’s feature space will intertwine another’s, making
it much more difficult to obtaln separation in a meaningful
way. The goal of the preprocessor s to present key
features that determine class for subsequent optimization

by the classifier.
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B. FOURIER - MELLIN PREPROCESSING

Cormon to all univariate, time series classification
problems are several variables that interfere with the
recognition process. Assuring discrete data processing 1is
used, these are addressed in the ~following order;
windowing, framing, scalinag, sampling rate, quaantization
noise, and sufficient information. For real processing, the
irput waveform is aot sampled for all tirme. It 1s sampled
for a period of time. This windowing of the data corrupts
the resultiag spectrum 12 two ways [2]. First it iatroduces
a periodicity (the 1inverse of the window length) and
resulting aliasing to the otherwise infinite spectrur, aad
further distorts the spectrum by a convolution with the
spectrur of the wiadow itself. 3oth of these effects will
color all of the data in the same way and so can be
accounted for by determiaistic methods.' Framing can Dde
considered characteristic of poor synchronization, wherebdy
the pattern of concera 1s not position stable with repect
to the window as shown in figure Z2a. It seems that even in
human optical recognition, the eye tegds to ceater the
pattern prior to recognition, unless trained otherwise.
Scaling is that property whereby the object field may vary
in scale or aspect angle, 1in one dimension or several
dimensions as ia figure 2. Before the analog sSignal 1is

sampled, it must be fed through a sharp low pass filter,

15

C AR A< = e at o,




AR e o

a. SHIFTED TIME

ACt/4)

TIME

Shifting and Scaling Variation
Figure 2
1€

Korls My T




because no higher frequency noise can be present without
being folded onto the valid data. Quantization noise, due
to the requirement to round off each sample to some
discrete 1level, 1is treated the sare as round off error in
nurerical processing [3]. Ia all of these problems
discussed to this point, the effect of this processing is
to mask the actual feature vectors, raking the
classification system 1less sensitive to valid pattern
characteristics. In all recognition problems, 1t is assumed
that there is sufficient information present for a pattern
to be detected and 1identified by the system. This means
that there is sufficient variability between the classes,
but sufficlieat similarity bdetween those patterns of a
single class to classify each pattern 1in terms of those

classes.,

A verifiable goal of this preprocessor is to produce a
set of features that are invariant to shifting and scaling
changes. An approach, figure 3, has been proposed aad used
{4~10] . The preprocessor consists of putting the sampled
data <cuccessively through two transforms, a fast Fourier
transform and. a discrete Mellin transform. Integral
traasforms, the Fourier and Mellin 1included, develop

naturally from the solution of simple problems in potential

17
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theory ([11-13). The Fourier 1integral transform of the

waveform h(t),

ey = §hce) Kok eyl (1)

where K=exp[-2mf£t], 1s a principle analytical tool ia such
diverse f1ields as 1linear systems, optics, prodabdbility
theory, quantum physics, and signal analysis [13]. 1Its
purpose in the preprocessor 1is twofold, dbut relies on a
single characteristic. The magnitude of the Fourier

transform is invariant to shifting, h(t-a).
- 'h{“ -~ )
FlAct-a)]=e? L) @3 4e 2 @ 4 ¢
-on

/H(:J/ = /e“ H(:)/ (2)

This characteristic removes the effects of framing
inaccuracies, ard also permits the averaging of successive
looks or pulses of data to irprove feature resolution, but
removes much of the information about a signal’s structure

as discussed later. A discrete Fourier transform,

Ace) -’l(ma) mE 0, 1,2,.00, M=
H(f) = H(m /) mma, |, 2 o, NI (3)
= P W am N
Him) = Z, L) @ ? (4)
s B

has an equivalent ideatity, but it is only exact for shifts

of integer values.




’ F» C A(M-“')J )

= ! Hem) c'a"m‘“’”‘/“l ’I“‘”"I (5)

Shifts of other than integer values result in errors that
depend not only on the shift, but on qualities of the

sampled waveform itself, h(t).

The Mellin transform is an integral transform with the

kernel, K.

Kk = ¢! (6)

(7)

H¢s = 501“) ¢l

is the Mellin transform with respect to the complex
parameter s=r-j2®m. Several simple substitutions relate
‘ this to more common analytical tools. Exponentially warping
: t=exp{x] changes the appearance of the integral to what 1is

often called a double sided Laplace traasform [14],

Hes) = g-:f(e') e« (8)

The transform 1is invariant to ¢t domain scaling when taken

with respect to the imaginary part alone,

Heo = .S‘-l () &R g (9)
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Equation (S) is recognized as the Fourier intergral of an
exponentially distorted waveforr h’(x). The modulus of the
expression on the right is the magnitude of the Fourier
transform of the expoaeatially distorted time functioa. The
property to be exploited in a Fourier-Mellin (FM)
preprocessor 1s that the rodulus of the transform in s, {is
invariant to t-scaling. Given a time waveform h(t), its
Mellin tramsform H(s) is given as equation (7). Scaling the

entire t-domain by k,

MLACe/a)] = [’A(t/m 7t

(12)
Letting r=t/k, and rerembering that s is imaginery,
-
4“5 RAeryrlay = ‘,Q‘ Hes)
| & Hesr | = | Heaa | (11)

Much effort and detail is spent implementing equation (7)
digitally 1in Chapters II and III. The rest of this chapter
is devoted to providing some required bdackground on the
discrete versioas of the Fourier transform and some
properties upon which the FM preprocessor depends. The
treatment here is bdbrief, being mainly a review of basic FFT
concepts and as such may be skipped without 1loss of

content.

A discrete Fourier transform is not computationally

efficient aanad so 1leads to impractically long processing

21




times. The fast TFourler transform (FFT) efficiently
computes the discrete transform and is wused 1in the
preprocessors built for this thesis. Other properities of
the FFT should bYe rresented before getting into the
detalled design of the preprocessor. The first and last are
concerned with symmetry. If h(m) is real, as in the case of
the sampled data, then the frequency spectrum of that data
is even, !Fe(n)!=!He(-n)!. BH(n) has a real part and an
imaginary part, Re(n) and Im(n), while h(m) has an even

he(r)=he(-m), and an odd ho(m)=-ho(-r) part.

Re(m) = .S‘ Ke Cm) cos (zﬂ:m )
mao
"ot
Loa(m)= . inf 2 ~
2 Lo comisin =) (12)

The odd part of h(n) times the cosine kernel summation, and
the even part of h(n) times the sine kernel summation are
both zero. E(n) caa now be seen to have an even and odd
part. Taking the magnitude of an odd fuaction makes it
even, proving that the Fourier transform of a real series
i¢ a spectrum whose magnitude is symmetric about f=@¢. This
is of course ¢true for both the 1integral and discrete
Fourier transforms. The second 1line of syrretry is an
effect of discretizing the signal and its spectrum for a
discrete transform as evinced by its theoretical
development. DBefore rroceeding though, the convolution

theorem {s required.

22




The convolution of the two functions h(t) and g(t) is
defined as the familiar integral,
o
g = j:‘f(f) ?(t—ﬂ dAdr = Lt * 3 (¢)

=.f_¢,m.£(t-~u~a; cowlee) (13)

The relationship ©bvetween coavolution and the Fourlier
integral is very important to modern analysis and
contributes to making the Fourier traasform a key analytic
tool. The convolution theorem states that if h(t) has a
Fourler transform F(f) and g(t) has the Fourier transform

G(f), then h(t)*g(t) has the Fourier transform H(f)G(f).

g € = L e x4 (8)

}[;ce}]: R (£) G () (14)

Proving this, the Fourier integral is used directly on the

convolution integral.

-7 2 fe

Yeh) =f”[ [.;(q\)l(f-r).m e et

=I:’"’[I2(t-f)¢-;.z’{tdt] o (15)

From the shifting theorem already presented,

Y(¢) = j

;C‘?) [{3‘2” p'y(;)J odr
»

< Hewy [ g e E My (1e)
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And finally,

Yeor =3[ 40¢) e Lcer]= Gee) Hed)

It can be shown similarly that,

FLGcs) % k)] = 9 (¢) L Ce) (18)

Clearly, convolution in one domain is simple multiplication
in the other domain. Although not needed for the pending

developmrent of the discrete Fourier traasform, another

irportant relationship, known as the correlation theorem,
can be appropriately dealt with here. The correlation

iategral,
2 (¢t) = j‘ X(ﬁ)’q('rwt) ol » (19)

has an operation with which it forms a Fourier pair as did
the convolution-multiplication operations. This theorem can
be established as bvefore,

Z(F) "‘f:[f"j (g (4*4t)441‘]<:-3-m(ta‘ t

36.(‘)[f Ar cos 20 2)de 17' f Lcr) sin (zﬂfr)dr]
-~ - (20)
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The term 1in brackets is the complex conjugate of H(f) and

is denoted by E*(f) in the final form of the theorem below.

J[.[:icr);,mf_).w] = Gf) H™h)
(21)

We will now coatinue on2 to the discrete Fourter
transform starting with a continuous waveform h(t). The
vaveform is samrpled or multiplied by a string of delta
functions, s(t).

-
Lee)sce) = Z.ﬁ(ma) I(¢-ma) (22)
mre-
where capital delta is the sampling interval. The infinite
sum is not realized and must be windowed, 12 this example,
by w(t)=1 for @ =t %(M-1)4 and zero elsewhere. So that
a0v,

M-
Ay s@wer = D Aema) I(k-ma) (23)

m=o
Recalling the convolution theorem, the multiplications 1in
the time domrain corresrond to convolutions in the frequency
dorain with the following results. H(f) is convolved with
the window functions’ spectrum and will have the apparent
effect of introducing ripples btecause of the window’s
significant sidelobes. The rippling may be minimized Dby
choosing a window function with small sidelobes at the cost

of other, perhaps more acceptable, spectral degradation,

2%




BE(f) 1s convolved with the sampling fuaction  aad
S(f)=I(¢-n/4 ) has made the spectrum periodic with respect
to the interval ¥=1/4 . The spectrum cominag from a real
waveform is first symmetric about f=@ as shown before. Now
because of its periodocity the spectrum is symmetric also
about f=F/2 (the Nyquist or folding frequency). One final
step remalns. The Fourler spectrum 1s also taken at
discrete points 1/T apart. The result in the time domain is
the coavolution of the sampled, windowed signal with

I(t-nT), which is a periodic signal with T as its period.

The FFT algorithm used in the preprocessors developed in
this thesis uses a Cooly-Tukey, base two algorithm [15].
This is docurented where it is used in progréms included i
the Appendices. The algorithm uses N samples where N is two
to an integer power., In the traasformed domain, due to the
symmetry shown above, there are N coefficients (only N/2 of
which are unique as showa {2 figure 4). The original
vaveform must be band limited prior to sampling to minimize
aliasing. The resulting frequeacy spectrum should approach
zero at the folding f:equency'where up to half of the powver

can be aliasiag noise.

In the following two <chapters, several different
preprocessing algorithms are developed and their

performance compared with canonic inputs. In Chapter IV the




s

probler of ship ideatification with range o2aly radar s
discussed briefly and one preprocessor is applied to
several ship profiles. In the fifth and final chapter,
conclusions are drawn from the work done here and follow-on

efforts are recommended.
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IT. DIGITAL MELLIN TRANSFORM
BY EXPONENTIAL WARPING

In the first chapter, the modulus of the Mellin
transform was shown to be invariant to scaling. A detailed
exarination of the rechanics {nvolved suggests an
irplementation that is widely used. The Mellin traasform of
a t-domain function h{t) is given 1in equations (7) and

(g')o

H(S) = j..j (¢) £ ¢ (?)

Hes) = 501(48’) e*Clx (s”)

Delta has been added, corresponding to the sample interval
in the t-domain. Agaln it is noted that (9°) is a Fourier
transform, where s=-j2Mm, Solving the integral for the

effect of a t-scaliag by the factor k,

P /p a® Sx
S'l(t/ldt"‘alt = S Lce “‘A4)¢ dr

= & s ol Hes) (24)

Clearly, in the Fourier integral, the scaliag factor k has
become a shift for which the modulus of the transform 1is
invariant. The exponential warp alone has traasformed the
scale factor 1into a shift. A prerequisite is that the
t-dorain signal has no shift. If there were a s<hift, it
does not transform to a simple factor or shift ian the

2¢




Mellin domain and so cannot subsequently be reroved by

taking the magnitude of a Fourler transform.

Irplerentation of a discrete Mellin transform is as
difficult as it is with the Laplace transform [13]. Oace
transformed, characteristics in the new spectrur are
difficult to relate to tke original signal characteristics.
One hypothesis relating the twe domains is geaerated by
comparison to the Fourier traasform. The power spectrum
associated with the Fourier transform can be used tc detect
periodicities in the pkysical function, siace the wave
numbers at which sharp peaks of the spectrum occur give the
wavelength of such periodicities. 3y analogy, the positions
of the peaks 1in the spectrum associated with the Mellin
transform are sald to give the magnificatioa or compression
which will oproduce features in the physical domain.
Further, this stretchiag and compressing 1s identified as
periodic in nature [21]. This seems unlikely becauvse the
Mellin 1s 1invariant to ragnificatioan/compression and does
not behave well (a scale factor that is a function of t and
k(t) as seen in (24). The Fourier spectrum models the
original signal by a set of weighted sinusoids of varying
frequencies, and therefore, naturally display pericdicity

aad {s invariant to shift., The Mellia is also a weighted
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sum of sinusoids, but whose magnitudes are Iinversely

weighted bdy t.
- e..;'?ﬂmﬂkt
Hes) = jl(ﬁ — olt (25)

.
Values for h(t) for @ t 1 are far more importaat to the
sum than those beyond that point. This characteristic
contributes to the difficulty of realizing discrete lLaplace
and Mellin ‘ransforms and is a major topic covered in this

chapter.

The nurerical approximatioa of the Fourier-Mellin (FM)
transforration by exponential warping s functionally
diagrammed 1in figure 5. A TFORTRAN program using the
algorithm described in this chapter is included in Appendix
A. Referring to figure £, the iaput samples are from a
pulse whose duration is finite and less than that of the
sample window. TFor this case, no spectral distortion is
experienced by filling zeros behind the sarpled data. The
only effect of the zero filliag 1s to add spectral
resolution in the frequency domain. Once through the first
FFT block. and the magnitude taken, Ef {s symmetric abdout
zero and at the folding frequency. Thus, for N time samples
and filled z2eros, there will bde N/2 wunique spectral
coefficients, This unique spectrum is 4interpolated,
resarpled as a warped signal and fed to the final FIT

block. A correction is added, and the modulus is taken. The
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resulting FM features are invariant to shifting and scaling
in the time domain. The FFT block was covered in sufficieat
detail in the vreceding chapter. Some effort will be spent
in discussing the warping 1tself and the need for, aad the

development of, a zero point correction.

A. ALGORITHM DEVELOPMENT

This section uses its own notation to address the
requisite exponential sarpling. The series to be
transformed is h{(f). Its Mellin traasform is E(m) where r

is the Mellin frequency ia s=-j24mr. The traasform is,

Hem) = 5'."1(;),(’"‘,({' (2€)

Letting f=Fexp[x] as bvefore, where F is added corresponding

to the sample interval

-
Himy = j LA(Fe*) e (27)
The need is to evaluate M equally spaced samples in x, at

a’xl zx/.'., (M-I)X (28)
while the data consists of N equally spaced samples in f,

o, F, ZF, tea (N"')F (29)
Assuming that ¥ is a srall enough interval tc¢ properly

characterize h(f), it 1s sometimes advisadble [2,18]) to
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choose the exponential sampling interval (X) such that the
largest intersample spacing in h(Fexp[x]) is equal to kF
where k=1. The other set of coanditions used to wuaiquely
specify the new samples are that f=F and x=¢ will be the
lowest lirit for iaterpolatioa, while (N-1)F and (M-1)X are
equated as the upper limit,. The first requirement

constrains the cholice of M by

I (30)

Meeting the second <condition, the ead poiats 1ia each

sampled series are equated yielding,

(=1} X

(N-U = & (31)

Substituting (31) into (30) while applying the exponential

series approximation gives,

X - ‘ . x*
[ =2 ’ z—-‘- = I_X"'—i'!""'

Pl

_;é__ (32)
N-1

X =
One more substitution, (32) back into (31) sets up the
desired result where M is nov specified to exponentially
sample from f=F to f£=(N-1)F with kF being the largest

interval between samples.

M o :.' A cn-1) (33)




As N gets larger, M explodes. If N=1€ then M=41, {f N=32

then M=106, 1{f N=64 then M=261, and so on. This strict
requirerent caa Yde corpromised depending upon the
application. The other extreme [18] is the criterion that
requires the srallest interval between samples to equal the
interval between uniformly spaced Nyquist sampling, with
the 1intervals increasing exponentially thereafter. The
specification permits analyzing frequencies approaching the
largest which can be analyzed with uniferm spacing. This
greatly reduces the number of samples and decreases the
required processing tire, bdut is 1limited 1in application.
Two factors mitigate the stringent requirements imposed by
(33) where k=1, First, using N unique, uniform samrples
yields N/2 wunique, wuniform samples in the FFT domain. A
related consideration is that the values of the spectral
corponents approach zero at the folding frequency because
the original signal has been band 1limited and some over
sarpling 1is normally recormended. Secondly, the inverse ¢

weighting apparent in equation (25)

fu 2w B f
Hem) § :‘;;ﬁ I Rlah7s (25°)
\ _

attaches a decreased importance to h(f) near the ~folding
frequency fn. These two effects comtine to permit a much
lover sampling rate once the modulus of the FFT has been

taken. In spite of this, the stiffer rule (33) is used for

-
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this work to generate the best FM dorain possible. Whatever
rule {s used, oance the expoaeatial sample poiats have vpeen
comrputed for an ™ preprocessor, they needn’t be
recorputed, but can be stored for rapid access during the
interpolation. Some 1interpolation must be performed to
approxirate the spectral values of the new sample points.
Third or even forth order Lagrange polynomrials have been
recormended and wused for this purpose with apparent
success [9,16,19]. The advantage of the Lagrange technique
is that its notation 1s particularly compact, coasistiag of
sirple summations and repeated products that lend
themselves to digital realization. Unfortunately, for the
data sets used in this thesis, the third order algorithm
was observed to tehave poorly, adding a ripple in regions
of raplidly changing slope. That this might be the case was
suggested by the advice that Lagrange is very good near the
ceatral data point whea the order of the polyaorial is
known to be the same as the order of the approximation,
otherwise it 1is test left alcne [2¢,21]. Ia its place, a
second order polynomial was used¢ to interpolate the warped
samrples with results that were nearly indistinguishable

from the actual waveform, as seen later in figure 8.
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3. ZERO POINT CORRECTION

Another problem becomes apparent when the Mellin

transforr of h(f) is recalled,
H(;) = ‘S‘a_.‘i;_f-)- ‘Fr’{fsj‘A(e") er‘d/K (34)

wvhere s==3j27m. The exponentially sampled waveform
described above is applied to an FFT block. As £ approaches
the folding frequency, h(f) tends to zero. Unfortunately,
as f approaches zero, the value of h(f) is not zero. In
fact it is frequeatly rather high. To make matters even
more interesting, the 1left 1integral 1in equation (34)
clearly shows that the closer to zero f gets, the more
important h(f) becomes to the integral. Several solutions

to this problem are coasidered below.

One practical, simple apprcach is to set the DC (ie,
f=@) term of the FFT to zero. The effect i1s nothing more
than removing a DC level back in the signal domain, but
Mellin transformation 1into the FM domaia leaves the
spectrum dependent upon the scale factor k [22]. Setting
the ¢£=0 coefficient to zero correspoads to setting h(f) to-

zero for @ <1, where the unity upper 1limit 1is chosen
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without 1loss of generality. The resulting transform of a

scaled signal dorain h(f/k) is

-~

(Lcraerur= 47 f R0 7 ur (359

which 1s obviously dependent upoan k. The <closer k is to
unity, the smaller the effect. By increasing the f spectral
resolution, the error can be reduced. The error may bdbe
insignificant for many applications (e~-8], but the

technique should be used with care.

The first solution has highlighted the need for a zero
point correction. Another common solutioan (12-11] is
developed by breaking the 1integral wup as before. Again
using unity as the upper limit of the left 1integral while
reraining general in application,

((Reer £ ak o STRCEFUF
s J;d [0 + jlﬂcr)f‘“dé’ (3€)

Two assumrptions are made to get the correction term. First,
that h(f) remains a constant h(@) over the ianterval of f
between zero and one. Second, and not as easily accepted,

e_‘?'u.ﬂ..o = eﬂ'o =0

o= (37)

Equation (37) pretty well shows why this assumption is

suspect, but playing along for the momment, the questioa 1s
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reserved for a later detailed 1look. Acceptingz the

assumption, the correction factor becomes,

ZLco) AT
Zesy = 3 = " e (38)

Because B(s) i1s a complex fuaction, Z(s) must be applied
(added to the imaginary part of the succeeding Fourier
transforr) before the magnitude is take to remove scaling
dependence. This correction 1s specifically derived for use
with a continuous Fourier transform such as the optical
Fourier in imaging systems with the added stipulation that
h(f) be nearly constant over the range @<f<k where k is the
largest scale factor expected. If an FFT is employed to
rake this final transform, another correcticn should bve
applied as shown by Zwicke and Kiss [11] velow. This
correction factor differs from the ~first due to an
invariant property of tke FFT. The FFT of two uait step
functions that vary only in scale are balanced.

IZ“(‘—') . i e-,‘zrﬂx/ou/:lz'm) R Z’: o~ 2WA /M[ (35)

ave Ao
vhere m and p are arbitrary integers greater the zero and
less that M. Successive FFT coefficieats are summred, and
the average value of the contridbuting terms taken resulting

in,

C = -é- -_%'_ cot Cm 4 /M)

(40)




This is then multiplied by h(@) to arrive at the FFT Mellin

correction factor.

Z,,, (&)= Al (1o St Cark/m) (a1)

When k/M is small the 1imaginary term dominates and the
correction factor aprroaches that used in the continuous
case (38). Most of the work done for the thesis on the
exponential algorithm was done using the inappropriate zero
point correction (38). Siace its discovery was coiacident
with that of more powerful methods discussed in Chapter

III, 1ittle data was taken using (41).

To bound the error involed, an acceptable h(t) is
defined, windowed and transforred using the Mellin
integral. The window 1limit is then allowed to grow
unbounded and the resulting expressions are interpreted as
the error. It’s Yeen assumed that for 2<t<i, h(t)=h(0).
Since the error resulting fror the assumption in eqguation
(37) arises from this interval alone, t>1 is ignored for
the time being. Warping the signal as btefore h(x)=h(@d) for
all x<@ and h(x)=@ for all t>3@. Evaluating the integral to

a finite window width (T),

e . quT
Lo [Tio gy < A - 2
-T

sim (3 T7) a'Vi
[ 7 Ao [ ;}J)]
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The term in brackets iIs the maganitude of the contridution
from the region of integration, -T<x<@. Note that it
iavolves a sin()/() term. The effect is to add a peak of
(T)h(@) at the origin. The size of the peak depends
directly on the window border T. Lettiag T approach
infinity raises the spike at w =@, with lesser peaks at
w=(21+1)m /T, where i is aa integer. Fach of the subpeaks
has a magnitude of 2n(@)T/((2i+1)M ). Substituting & {nto
the second relation yields the eavelope (ia brackets) and

phase as T tends to infinity.

2_2(0) - T/
Ziowy = A, [2S] TR (43
T™

The error bound in brackets, does not depend on the sample
rate, or the size of the window. Aay approximation
approaching zero will have the same bound. Although the
magnitude of the error is in a convenient form, the phase
i{s 1indeterminate. For the correction to be applied, the
corplex addition must occur prior to the modulus being
taken. This cannot be done, leaving the error uncorrected,
but is bounded by 2h(@)/w for coatiauous and aperiodic
discrete Fourier transforms. For the FFT, equation (43)
does not bound the error. The sum of 1/1 does not coaverge
as 1 tends to infinity. At any point on the FFT this sum is
present due to the apparent folding. The error itself 1is

not unbounded because phase differences in the sum of the
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errors at any poiat may result in the envelopes adding
destructively, reducing the actual error. Adding the
envelopes {s an unrealistic, worse case approach. The FFT
correction {(41), can not dbe compared to (43) for these
reasons. The other error correction, using the assumption
in equation (37?), can be compared. The first, setting h(@)
to zero, or just plaln ignoring the 9<t<1 1aterval have the
error function bound in equation (43). Although only
differring by a factor of two in magnitude, the constant
phase is arbitrary, and equivalent to setting T=0; that is,
assuming h(@)=@ over 2<t<l. This was the very problem the
correction was developed to remedy, but is without e?fect.
Equation (41), the correction for the FFT is not completely
accepted by this author, aldeit no real empirical evidence
have served to verify or dispute the claim. Suspicions are
raised on two aspects. The indeterminate phase of the error
(43) in the continuous case arises naturally from
approaching the t=¢ lirit with the Mellin integral. This
quality 1is consvicuous by 1ts abdseace 11 the FFT error
correction. The FFT error correction is computed dy summing
the FFT coefficients 12 the complex plane. The average
position of the resulting polynomial 1is the error
correction term. Bowever, the FFT coefficients of a finite

duration signal are the values of the signal, evaluated at

M evenly spaced points about the unit circle [3,23]. 1If
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the sequence is a constant, the average value is the origin

of the comrplex plane.

The zero point corrections for the Mellina transforr are
unbounded at «w =@, More tire could have Ddeen spent
determining the ©best applied correction for the specific
case at hand, but direct methods are developed in the next
chapter that obviate the need to employ the correction at

all.

C. TESTS AND RESULTS

It 1s worth admitting at this point that the results
using the exponentially warped algorithm ¢to achieve a
discrete Mellin transform have not been good. More recently
developed techniques in Chapter III greatly surpass the
results reported in this section. Although much of the
theory used to improve performaace 12 the following
chapters could have been used here, this was a preliminary
attempt that was later abandoned. The FM processor
describved 1in the previous section was built using FORTRAN.
Appendix A 1s the docurented prograr., This section will
review the processing with actual plots of the signatures
at different stages, discuss the required tests, 1{introduce
the testidé approach, and finally iantepret the results. The

functional block diagram of the preprocessor, figure 5, is




near the beginning of this chapter and could be profitabdbly
reviewed. Figures 6 through 9 represent the step by step
viev of the signal processing, where the signal, a test
shape, 1is shown 1in figure €. The waveform, appears as an
envelope, and is drawn with vertical lines 1indicating the
sarpled series. Figure 7 is a picture cf the FFT, in {its
sampled version showing its symmetries. Figure 8 is a very
close approximation to the continuous periodic transform
achieved by filling zeros to obtain the requisite spectral
resolution. A "+  on the transform plot indicates an
exponential sarple point interpolated from the sixteen
unique points ia figure 7. The warped samrples are sent
through the FFT block once more with the result showa as
figure 9. Heavy spectral coloring by the h(@)/«w correction
factor 1is evideat. Cnly the first hal? of the épectrun,

from zero to the folding frequency, is valid.

Complete scale invariance was never realized althousgh
its effect was greatly reduced. All the testing done on the
exponential algorithm was an attempt at achieving and
verifying shift and scale invariance. Much effort was spent
structuring the tests to avoid the effects of processing
noise so the actual algorithmic characteristics could bde
determined. Along the way, requirements arose to select a
suitable interpolation polynomial, an optiral zero point

correction aad other system improvements. In all cases, the
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test procedure was to first select canonic test shapes.
Squares and triangles were most frequently used, bdelng
shifted, scaled and combined to determine preprocessor
characteristics. Scaling was most frequeatly by a factor of
two or less. This corresponds to an aspect angle change of
60 degrees from the unscaled case. For many tests, care was
specifically taken to eXxactly scale a sampled seriles
instead of the waveform envelope. The variation in input
signal when this isn’t done 1is evident when considering
figure 16. For the envelope shown, the sampled series
cannot recoastruct the <same signal, and may result {2
feature space variation. Two feature qualities were
monitored 1in each test to determine preprocessor
performance; insensitivity to shifting and scaling, and the
ability to differentiate between canonlc classes. These
qualities were measured by visual comparison of the @M
features, by computing the correlation coeffiecleats and
the mean squared error between the feature sets s f
differently scaled similar test shapes, and by computing
the distridution of the error over the feature space. The
latter test was an attempt to locate feature regions of
class comrmonality, and regions of distinction Dbetween
canonic classes. This approach allowed macroscopic and
microscopic examination under changes of scale, shift and

shape. The clustering and separation qualities are data

4¢
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i dependent. Since no ship radar video data was used, all
observations were with respect to <canonic <classes. No

strong groupings were detected.

As alluded to earlier, the results for the exponential
; algorithm were 1less than satisfactory. Test shapes were

carefully designed to minimize sampling effects, aad to

ensure low side lobes in the frequency domain. Many tests
were conducted using each of the =zero point correctioa
methods with varied shapes, sample rates, and spectral
resolutions. Classification on the basis of signal shape
was very poor. The strongest correlation was between shapes

of common duration. Table 1 shows a typical result of

comparing a rectangular shape and a ralsed ramp. The
, scaling in each case was by 2 (€0 degrees). Equation (38),
Z2=h(@)/w was used, bdut the others offerred little
irproverent. Consistently, the strongest sirilarity was
shown between shapes that had the same sample length, vice

shape.




TABLE 1

Canonic Shape Fourier - Mellin

Feature Comrparisons

} a. Peak Correlation Values

RECT RECT/2 RAMP RAMP/2
RECT 1.00 2.77 2.98 2.76
RECT/2 - 1.00 .87 1.00
RAMP - - 1.00 2.8€
RAMP/2 - - - 1.00

b. Squared difference detween features.

RECT RECT/2 RAMP RAMP /2
RECT . 000 032 .219 .232
; RECT/2 - .200 .832 019
r RAMP - - .200 032
RAMP/2 - - - . 000




ITT. DIRECT MELLIN TRANSFORMS

The 1last chapter develoved a rethod of obtalaing the
Mellin transform by exponentially warping the signal prior
tc using an FFT block. This technique is referred to as the
fast Mellin transform (FMT). Although the promise o scale
invariant features 1s attractive, 'some of the problems
encountered that make the F¥MT unattractive are reviewed
here. The required sample rate varies with respect to the
data, making general applications difficult. The tendency
1s to use more samples thaa required, which quickly becomes
costly in an exponential sampling scheme; ‘The need to
exponentially warp (to interpolate) a set of ﬁéw sarples,
is expensive in time required. For true scale iavariance, a
correction factor is required but because of the iategral’s
unbounded nature at zero this correction factor is
indeterminant. Several correction methods have been
erployed, but they depend on unspecified data
characteristi~s. These effects combiae to make the actual
performance of the algorithm poor. Although scaling effects
are mitigated, they reralin an artifact, which is disturbinag
to classification attempts. This chapter outlines the
effort to remove these 1liritatioanas. Some useful Mellin

properties are developed, and then applied to establish
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several Direct Mellin Transforms (IMTs) which were built,

and their performance compared.

A. SOME USEFUL PROPERTIES

Some general observations are made here about the Mellin
transforms, and are follovwed by some specific relationships
which were derived and applied. A property of the Mellin
s-domain is that it is unaffected by scaling changes in the
original x-domain. Figure 11la is a test shape in the
x-domain. Two features are identified according to their
amplitudes A and B, at x=a and x=b respectively. The ratio
of a/b equals c. To be simply scaled by k, hi(x/k) must
remain the same in all aspects except that the distance
between features has been changed according to the scale
factor k. Figure 11b shows the scaled domain. Featuvres A
and B are again identifiled at their scaled positions ka aand
kdb. The signal property maintained by scaling 1s relative
positional 1integrity, that 1is, ka/kdb equals c as before.
The positional integrity of the features, the ratio of
their distance from the origin, to that of another’s is
unchanged. Restated, an operation.O[h(x)] in the x-domain,
will leave the s-domain mrodulus iavariant to sirple scaliag

by k it

O[Acxra)] = Fexran (44)
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Note that the entire domain is scaled, so no unscaled shift
in the doraln can be permitted as already discussed. Ia the
Mellin s-domain, any simple scaling in the x-domain results
in a phase distortion (the modulus is iavariaat to k).
Manipulations {in the s-domain will 1leave that domain
invariant to k, as 1long as the modulus is modified by a
multiplicative factor of constant phase. That is, if |G(s)|
is an arditrary function of s (except that it does 1ot
depend on k) and M[h(x/k)]i=!B(s)! is also invariant to k,
then their product 1is 1i1avariaat to k and the x-domain
remains simply scaled. For instance, in the zx-domain the

operator O[h(x)]=x(h(x)), does not meet condition (44).
a h(xjh) # f(x/4k) (45)

So the Mellia transform’s rmodulus of xh(x/k) cannot be

invariant to k.

In Chapter II, a error was appareant because h(x) was not
equal to zero for x=@0. If h(x) could be modified with an

operation that met the condition of equation (44) and
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always produced a series that was zero at x=¢ a general

approach can be developed. Consider two operators,

O Mra)] = 3‘;,;'( « KCxsa))= € (x/k)
(46)

OLAcx/a)] = ~ 3’;;(/«(«/&))-- Lcx &) (47)

Equation (4€) will produce an acceptabdle f£(x) as df/dx=@ at
x=0. Equation (47) will always produce the required
condition. To see the frequency domain equivaleants, we must
assure that the Mellin 1integral exists. Iategrating by

parts,

\ S::Q(«/A) K dn | = lH<=>f

[ fjx‘:':"‘_;”i). A x l - ![«‘.4(«/4)]:- s fj(«/n«"‘h/

=[_S£.‘4)(,x/4)“:-4 “lals H(:)/ (48)

The result in the frequency domain is consistant with the
conditions stated above. The 1limit of h(x) as x goes to

zero or to iafinity must dbe zero if equation (48) is to bde
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true. Sirilarly, under the same conditions, it can be shown

that

/”’[:‘i_(q j(a,/‘l)}]I:' I(J-H) H(J')/ (49)

Equations (48) and (49) clearly do not apply where h(d) {is
not equal to zero. However, by using the x(d(h(x))/dx)
rodifying operation of (47), a series caa always be zero at
x=@. The function h(x) is further constrained by the fact
that 1t must fall off faster than 1/x. This assumption must
be valid and the modifying operator must be applied in the
x~dorain for the Mellla integral to exist in general. A
Mellin transform of a function, after having a modifier
applied, will be called a modified Mellin traasform.

°Ud K(‘x)

Ha¢s) = . Ax

The integral is close to a form which is realizable, except
for the upper limit. For a finite sampled series, h(n) will
be assured zero outside of the 1interval @=<ndN. This
truncation effects the transform of an otherwise infinite
series. In this application the Mellin i1s applied to an FIT
frequency spectrum. The truncation in the frequency domain
is due to band 1limiting the signal prior to samrpling.
Scaling in the ¢time domain will not result 1in simple
scaling, dut will add a dependeance on the scale factor k

that can not bde removed by the transform. An approach by
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Prost and Goutte is used to predict the size of the error
(24,28]. First a suitable function will te selected and a
relative error of truncation {(RET) deterrined and applied
to two scalings. The relative difference of the feature
space is found and 1identified as the error. Remembering
that this is applied to a frequency spectrum, dh(f)/df 1is
approxirated by a fuaction of the form.

AhE) o [ F

ol £ (51)

The modified Mellin transform of (1) over a finite
frequency range would te approximately,
F

Hoe ¥ ¢s,F) = ‘/‘fe.'{rp"("p (52)
The lower 1limit has been set in a manner to be consistant
with Plancherel’s theorem. A convenient worse case
assumption is that the lower limit is essentially zero, but
this depends, in general, on F and the data 1itself.
Ha*(s,f) converges toward Ha(s), equation (@), in the mean
square as F tends to infinity. The mean square error will
n0t provide an expressioza for the errsr that caa be used to
correct for it but is useful to reasure the effect of the
truncationa 4in more general terms. A reiative error of
truncation (RET) can be cormputed if the error is assured to

be distributed evenly over the raage from which Ha*(s,f) i<
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computed. By employing Plancherel’s theorem, the mean

squared values are,

& = f/fe‘ff'l‘# = L"(‘e'z"a/f (53)

F -
¢=z=- £ lrzﬂlpo(F

(54)
The RET {s defined and solved as,
e.,"—e' L . .
rer e (S5 52 T (arnr )

But the 1limit F depends not only on the pass baad F, but on
the scaling in the f-domain. A relative error (RE) tetween
a truncated spectrum and a scaled and truncated signal

would be more complex, but worth the effort.

~3F 3 -L&F =
2F Fa1)=-( /74 2 F Y+ 4 F
Rs=("( +F1)-(1k) % (2 4 1+:)) se)

= e *F (2F%+F +1)

vhere 0<k<1l. Two observations should be made here. First,
the relative error of truncation (55) and the relative
error or difference between two truncated spectrums scgled
differently (56) both depend on F. F depeads on the cut off
frequency of the low pass filter prior to any sampling. It

is often <chosen to minirize aliasiag depending upoa the
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limitations of the sampling circuit. Second, RF depends on
k as vell. The importdance of scaling differences to this
data type can be readily seen. If equations (55) and (£6)
are valid, and if the range of k can be bounded (a design
specification) F can be chosen to realize a stated RE. Or
if F 1is fixed and k bouaded, the REY may be determrized for
evaluation. If the data type is not appropriate, a more
representative function may be determined and used i2 place
of equation (51) to attain better expressions for RET and

RE.

B. ALGORITHM DEVELOPMENT

Part A above provided some ‘background <for making the
Tirect Mellin Transforms (IMTs) in this section. Ia this
presentation’ the Justification is given with the
application first. However, chronologically the naeat
package presented above was preceded by extensive
evaluation of empirical results, 2ot vise versa. Appendix 3
docurments the FORTRAN implementation of all the algorithms
developed in parts 1 and 2 below. Figure 12 is a functional
block diagram of a generalized FM preprocessor using a DMT
to shov the simplicity with which it can bve applied, as

opposed to the FMT covered in the seconrd chapter, figure 5.
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1. First Difference Approximatioas

Although developed through a different rationale,
this first algorithr was developed by Zwicke and Kiss [11].
Starting with a sampled series hi, the series is orerated
on by the modifier defined in equation (51), wusing the
first Ybackvard difference to approximate the derivative

wvith respect to x. Unit step size is assumed.

a dheo = (Ao -4, )= Vj,. (57)
d x

Taking the trapezoidal rule to evaluate the modified Mellin
integral (52) while recalling that h(@)=0, aad h(N) 1is

assumed zero,

N=-{
Hy, (m) = Z VAM m*

(58)
o E X
where s=-j2 n#m/M. The complex coefficients are
mT= cos Zﬂ'(m/M)Am-;' Sin 20 Com /g ) Lan Em) (55)

They can bde calculated off line and stored to produce just
the desired characteristics. The factor (2#m/M) could be
any nurber that produces an iateresting feature. Uadesired
features need not be computed (wvhat in general was a N by M
matrix, where M 1s the onurdber of Mellin traasform
coefficients and N the number of x sample points). If a

relatively small numbder of features 1s required, perhaps
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the processing will be manageabdble. Notice that no zero
point correction is required. Cnly data changes contribute
to the transform. These observations are valid for any of
the modified Direct Mellin Transforms developed 1in this

section.

By using a central difference instead of the

backward difference, a simillar result is obtained.

N-!
HoiCom) = 0 (A, A, ) ™ /2 (60)

mx |
Other nurerical iategrations may be used with improved
results, and other methods can be used to increase the

order of the approximration.

To test the algorithms, a ramp and inverse ramp were
used in a scaled and unscaled mode. The ramps and their
scalings are shown in figure 13. Flgure 14 is the analytic
results of both waveforms plotted with the transform found
using equation (€@). This is a dramatic improvement over
anything used with the methods discussed in the previous
chapter. The noise of the signal appears to be diverging as
frequency grovs, but over the range plotted, the appearance

is that of an algorithr trying to do well.
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2. Second Lifference Approximations

A second difference algorithm can be achieved by
proceediag as before. The pure scaling operator wused to
prepare the signal lis,

%
0L L] = «‘:21_;4‘.5‘." = m(4,,, 24+ 24,.) (61)

And the newvw algorithm is,

N-{
. | l
Ha.z (s) = s+ Z 4‘1"".-“ (€2)

~me |

Cther second order operators have been used, and
partitioned iato forward and backward difference variations

to (61), but this appears to be a basic and useful form.

The color 1/(s+1) 1is present to approximate the modified

Mellin of equation (62). The term (s+1) is valid assuming

that dh(x)/dx is exclusively upper bouaded by la(x)/x as it
approaches zero or infinity. For comparison, ancther seccnd
difference algorithm was developed based on the modifier ’
(x(d/dx) (x(d/dx)h(x). |

N=f
. [} [ - 5 N
Haut® = 5 2, (mahy s (e Luil) (€3) ‘f

;ny

f This is roughly the sur of the methods defined ia equatioans
(€@) and (62) above. The assumption for deriving the color
1/s is even less restrictive than before, but the algorithm

performs poorly compared to (62). These transforms depend
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on second difference characteristics, but are modified by a
1/s term which has a stabilizing effect. This is equivalent
to a division by x and integration in the x-domain. The
order of the approximation has bdeen iacreased by the
rodifier. Results using equation (68) and (62) should bde
alike. Figure 15 is the results of using (62) compared to
the closed form solution to the figure 13 test shape
transforms. An improved performance over (€2) is seen over
some of the range, but a drop as frequency 1increases

degrades the accuracy in figure 15b.

3. BHigher Tifference Approximations

Higher difference approximations can be developed.
For 1instance, one algorithm depending wupon the third
difference is,

N-2
. { 2 *
Hes= &7 ZAJ\“M“

ma

(64)

The -erformance of higher order algorithms becomes
increasingly suspect because of the extreme weighting they
apply to different parts of the series. Tifferent
algorithms exist, but this welghting 1s always a factor. A
smoother transform is achieved, but a large error is likely
to develop due to the algorithr’s dependence oa higher

order derivatives and the nature of sampled data. Eowever,
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these corments are speculative since they were not

confirmed experimentally.

4. Higher Order Integrations

Higher order integration rules should be able to be
used with a corresponding improvement in performance. One
using the first difference with Simpson‘s rule was
implemented with dissappointing results. Figure 16 is the
result of such an implementation. The droop for the ramp
input is aprarent even though 1ot present 1in the
trapezoidal rule used in subsection 1 above. The higher
frequency error \1is also more prevalent thaa before. A

program error 1s of course suspected, but was never found.
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IV. CLASSIFICATION PREPROCESSING

The problem of determining important signal
characterisics can be approached ian at least two different
vays. First, by trylng to learn what is important in human
recognition, and then trying to adapt a machine to erulate
that behavior. Or second, by using successive transforms to
remove inforration known to te superfluous to
classification, while keeping enough iaformation to
reliably assign an object to a class. Addressing the
forrer, even though it is difficult to determine specific
details, some key aspects of human visual recognition are
discernable. Chief among these is that the inteasity level
of a sceae, or object, does not appear to be as important
as the relative position of the edges, 1i1.e. the shape
separating differeat intensities and frequencies [25-28].
Exarples in scene analysis show clearly that the edges or
shapes are far more critical to human recognition than the
relative power differences themselves. The invariant shapes
or angles in scene analysis fiand their analog ia ratios
tetween similiar points in differently scaled time series.
Examination of many range only radar video ship signatures
has provided a basis for noting that the relative position
of tire domain features rerain coastant over changes 12

aspect angle, while the relative intensity of the features
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vary greatly as shown in figure 17. As the aspect changes,
if this set of ratios remains constant within a ship class,
then the set is identified as information worth preserving
for the classifier. Conversely, since relative 1iatensitiy
is not a stable measure over aspect angle, or from among
different ships of one class, that 4inforration should be
intentionally removed to provide tighter natural

clustering, with the minimrur number of features.

A. INFCRMATION REQUIREL TO CLASSIFY

There are two precoaditions that must both exist for a
set of possible input signatures to separate into distinct
classes. First, the features of a particular class must
have some common characteristic about them, and second,
this characteristic must in sore way be uaique with respect
to other classes. The assumption in existing radar
signature <classification projects is that there is enough
information in the signatures to permit this
classification. Short of actually trying to classify with a
set of reallstic signatures, the analytical determination
that sufficient information is presemt in a set of all

possible ship signatures is difficult to approach.

To establish how well the autonomous classifier is

performring some measure of the classifiability of the set
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received signals is desired. Failing this, some discussion
of the information capacity of the preprocessor should at
least be considered. The preprocessor produces the FFT
ragnitude of a sampled signal as the output of the first
stage. Most of the unique positional relationships of the
signal upon which human recognition apparently depead has
been destroyed. Next, the Mellin transfrom stage
effectively distorts the sigaal and uses the magaitude of a
second Fourlier transform as the output features. Signals
reconstructed on the basis of FFT phase information alone
usually provide sufficlent similarity to be associated with
the original signal, whereas reconstruction on the basis of
ragnitude does not retain any significant detail except
when the signal is symmetric [29]. The data is also masked.
For most applicatioas, the data 1is frequency shifted,
filtered and sampled as a baseband signal. This windowing
rasks the magnitude characteristic aand 1is specifically
designed into the processing. The resulting FM features are
inseasitive to positional and scaling relationships that

are necessary in human visval recognition.

Analytic support 1is also availatle to quantify the
irportance of relative position of events {29). By
considering rms error (due to spectral phase and amplitude
auantization for random signals) it has been concluded that

approximately two more bits are required for the
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quaatization of phase {inforration than amplitude for the
same rms error. A separate analysis applied distortion rate
theory to real-part, iraginary- part, and magnitude-phase
encodinrg of the DFT of random sequences. The result was
that phase required 1.4 bits more storage thaa magaitude
for a similar error [30). A third approach concluded that
the Fourler phase includes 1.5 bits more 1inforratioa than
the magnitude [31]. This was based on analysis of image
reconstruction from kinoforms (phase-only holograms). The
fact that phase-only reconstruction preserves much of the
correlation between signals would suggest that the location
of eveats tends to be preserved. Further, it seems that
this 1inforration 1is 1lost by taking only the magnitude of
the TFourier transform. Another interesting, albeit
informal, view is apparent as one considers the phase-only

signal as a spectral whiteniag process.

.}'[f“)]‘ Fef) = |[Feh)l e (€5)

For reconstruction by rhase alone, where the magnitude 1is

set to one)

Ffoc0] = IFI.“,, FLAe0]

Since the received radar signature will have an abundance

(6€)

of low frequency spectral lines and smaller high frequency

components, the 1low frequency information is not weighted

7€
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as heavily as the higher frequency information in the phase
reconstructed signal. This seems like it would accentuate
sharp changes in the reconstructed signature without
reroving relative location iafermation. The result 1is the
surration of the different frequency components, all with
zero phase (i.e., no positional or amplitude distribution

information can remain).

Considering the Mellin transform next, in a continuous
case, the exponential warp does not lose any information.
To zero the first data sample as required by the Chapter
IIT modifications, will surely destroy 1information, but
this may be confiazed to the ILC term aloae. The iaformation
lost during the final transforr and magnitude is difficult
to assess. Increased masking occurs due to the spectral
truncation, so actual information loss may not be as great,
but masking distortion may bde greater than bdefore. So
approximately two bits of information are lost. Only a
quarter of what was, remalns. Information is also lost when
the transforms are normalized in the processing so that any
power calculation is also meanlangless. Some 1interesting
questions arise. After removing positional relationships,
scaling, and power, what signal qualities remain and are
they wuseful 4in classification? Although it is true that

this insensitivity may add a certain robustness to the
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system, the arbitrary loss of wvalid <classification

iaformation should be minimized.

By exarining the quality that must be ignored, and by
comparing 1its removal to what is actually reroved by the
processing, an interesting result will develop. The effect
cf a tire domain shift on the frequeacy domain is an
additive phase term, linearly related to the frequncy of
the coefficient, as in equation (2). Most of the structure
of the signal is held {in the phase relationships with
respect to the fundamental and higher frequeancy terms. So
shift can be defined as the phase of the fundamental

corplex coefficient. By setting the phase to zero, aad

ad justing ¢the other coefficients according to their
component frequency, the structure of the signal is aot
lost but reconstructed about the fundamental as before. 1If
there are N/2 spectral phase angles, only the fundamental
needs to be zeroed to remove the shift. If the 1information
is coatained uniformly in the spectral phase, then oaly 2/N
b of this structural 1information needs to be removed. When
the magnitude is taken to produce shift iavarieat features,
! all of the phase relationships are destroyed. (N-2)/N of
the information once held in the phase was removed
needlessly. The amouat of information 1lost removing the
shift can be made arbitrarily small. As N grows uabounded,

1 the amount of information that needs to be removed tends to
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zero. This result seems to be supported by experience. With
enough samples of a shape, its position with respect to the
observation field is immaterial. In theory the priaciple is
sound, but some practical limitations may degrade predicted
performance. Recalling that an exponential warp translates
scaling to shifting generalizes the result a bit further.

ﬁ‘.i)

ACtskh) = A (e” (67)

The sare priciple that permits simple shift reroval is also
valid for the removal of scaling dependence as well. Using
the Mellia transform, scaling dependence may be removed by
zeroing the fundamental and adjusting all the other
coefficients as described above. For the FM preprocessor,
the information 1lost removing the scaling and shifting
dependence may be made arbitrarily small by increasing the
aurber of spectral samples used. Since the naumber of
spectral samples can be increased by filling zeros onto the
finite signal in the original domain, this process does not
effect the data sample rate. This approach was not verified
experimentally, but represents a potentially powerful tool

to analyse and improve the extracted feature space.




B. RANGE CNIY RADAR

This section addresses ship classification on the basis
of inforration gathered from a range only radar video ship
signature. An example of such a signature has already been
considered as figure 16. Classification by range only radar
csignatures is subject to the same distortions discussed
above. Typically, the radar return is detected and isolated
ia a range gate that s sampled aad digitized. The

rectangular sampling window can be considered the range

~gate 1itself. The range gate is designed to easure that the

included range is greater than the maximum ship 1length so
that the time/range windowing has no effect on the
frequency spectrum of the signature, other than 1increased
spectral resonlution. The placement of the ship signature in
the window 1s not set, neither from eacounter to encounter,
nor from pulse to pulse (jitter). The total effect joins
together to produce the framing distortioans. Signature
scaling results from viewing the ship from different aspect
angles. The sampling rate must be done at more that twice
the inverse of the resolution of the receiver. Quantization
levels are chosen i2 a manner to reduce that predictable
random noise to an acceptable level. The pulse to pulse
Jitter is an ever present characteristic of the radar
problem, bdut at a normal resolution (greater than 2% feet)

integrating the return 1ian the time domain removes the
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Jitter effect, reduces scintillation, and improves the
resolution of the signature. Although predetection
(coherent) integration 1is more efficient, post detection
(noncoherent) integration is rore comron because of the
convenience of not having to preserve the radar frequency
(RF) phase. For post detection integration of n pulses, the
signal to noise ratio would be something less than n times
the signal to noise ratio for one pulse [32]. More
important to the recognition problem itself, for a stabdle
system by the law of large numbers [33], fluctuation of the
average value of the return will be overcome. That is, with
the 1integration of n pulses the resolution (R) will become

fipner as

R = 45‘/1»\ (€8)

with a probability of 1-L, where S squared is the variance
of the signal fromr pulse to pulse. F¥or very high
resolution, the cost of making the signature stable with
respect to the 1integrator becomes prohiditive. It has
become convenlent ¢to integrate the spectrum of the
signature because the Jjitter effects can be completely
removed. Another limiting factor 1in 1integrating over a
pericd of time 4is that the position and aspect c¢f the
target are dynamic. They change with time. A conceptually

attractive solution is a recursive filter which weights the
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integrated pulses such that the older they becore, the less

weight is accorded to them.

If the course and speed of the target ship are known
from measurement of the target track, it 1s possible to
infer the aspect of the ship. The range profile can give
some estimation of size. Unfortunately, the three
dirensional <change in aspect angle, commonly suffered by a
ship presents more than just a video signature scaling
change. The radar cross section of even individual
structural components of the radar target <changes with
respect to the aspect angle. The composite effect is that
ship signatures vary greatly with aspect aagle. The radar
i1s an electromagnetic sensor, reacting to energy reflected
from the target. These reflections are a result of
scatterers that are related in dimension to the wavelength
cf the illuminating energy. Because of the great difference
in wvavelength bdetween light ané microwaves, what can be
"seen” by radar ray be quite different than that seen by an
eye. Also, when measuring size or aay distances with a
radar of high resolution (less than £@ feet), an error can
be Iincurred siace the extremities of the target are not
always good scatterers. Echoes from the forward or stern
vortions of the target might ©bYe observed ia the notise,
especially for a relatively low power radar [32]. After

reviewing hundreds of signatures, it appears that major
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features, such as overall ship 1length and dorinant mast
structure are frequeatly discernable, but vary in relative
amplitude. Resonance, shadowing (one reflector hiding
another), mul tipath returns, the rappiag of three
dimensional aspect changes onto a one dimensional time
<eries, and the amplitude and phase of componeat returas
summing constructively or destructively to cause a
sciztillation of the composite target. Some of the
variations caused by these conditions can be 1lessened by
integration ©but major effects remain causing the signature
to vary ir shape and content with the aspect angle. For
this reason, a class feature volume cannot be reduced to a
single point, bdut will remain a hypervolume in the feature
space even in the 1deal case. Any selection of features
should try to minimize this volume. Features should be
selected that are relatively insensitive to known

superfluous effects.

C. CLASS DISCRIMINATION

In the last chapter, the ma jor concera was removiag two
sources of variance with no classifying value. Algorithms
vere developed and canonic shapes generated to verify the
algorithms and demonstrate the invariance to scaling. In
the same manner, this chapter has reviewed iaformation loss

and process masking. The question of whether sufficient
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information 1s preseat o classify was raised. To answer
this question some simple classes of canonic figures are
defized, aa1d put through the entire FM preprocessor
documented in Appendix B. The LMT algorithm found to cffer
the ©best scale factor rejection in Chapter III was used to
generate the final features. The algorithm chosen is based
on a second difference modification and 1s defined in

equation (€2),

N-/
{
Hea (832 T3 D, At m (62)
M=

After canonic tests were rade, preprocessor performance o1
several ship signatures was recorded. Although this was
premature in the logical test sequence, the results are of

some interest.

1. Test Shapes and Results

Four test shapes were used. Figure 18 shows the test
shapes. All were scaled and shifted originally to test for
algorithm verification and demonstrate scale invariance. In
this series of tests they were 1left fixed and wused 12
different combinations ¢to try to detect shape presence in
the FM feature space. The object is to differentiate
between differeat <canonic classes. Figure 19 shows a
corparison of the shapes, rectangle and triangle. A test

combining the rectangle and +triangle was the subject of
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figure 20. Finally in figure 21 a rectangle with two
triangles 1s shown in the FM feature space. It is clear
fror the plots that most of the scale variance bhas been
removed. Just as important, some quality does remain that
differentiates between the canonic shapes. A square 1ia
general can be differentiated from a triangle. 4 "ship"
with a single mass of superstructure can be separated from

one with two such masses.

Although 1it°s clear from the plots that there is a
unique quality left in the feature space to allow the time
domain shapes to be classified, some quaatified measure of
system performance 1is required. The magnitude of the
feeature vectors have all been normalized with respect to
the first coefficient, so in that region little
discrirination can be expected. For higher Mellin
frequencies, noise dominates. A region of coefficients,
11-14¢ was chosen to classify the shapes by correlation.
The results are included as Table 2. The 4improvement in
performance over that shown by Table 1 in Chapter II is
dramatic. The methods in that earlier test resulted in the
observed length of an object ©being the distinguishing
criterion for classification. Using methods supported in
Chapter III, variations due to scaling and shifting of the
original domain have been removed. The features now reflect

the shape of the object in the time domain. An unusual
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effect 1s noted with respect to the difference squared
analysis in Table 2b, Although TRI2 1is wmore closely
correlated to TRI1 than RECT2 the squared error shows Jjust
the reverse. The results are encouraging. The preprocessor
has greatly simplified the classification problem for the

canonic shapes above,

2. Ship Signatures and Results

A single ship was used to make these preliminary
tests for this thesis. Signatures were taken every ten
degrees around a ship from =zero to fifty degrees. The
results are plotted and compared over twenty degree aspects
in figures 22-23. The signatures are the result of very
high resoluti&n radar signature data that has been degraded
and smoothed to a lower resolution with essentially no
noise present. Recalling that the purpose of the
preprocessor was to remove variance due to pure shifting
and pure scaling, leaving enough Inforrmation for
classification, to the eye there seems to be little
eacouragement from these results. It is recalled that a
goal of this preprocessor is to make the <classifiers job
easier by removing dependence on shifting and scaling of
the original data. The information that remains depends on
unspecified signal characteristics that here appear to

useful in discriminating shape classes and possibly ship

S0




classes. However no real conclusion can be drawn at this
point because of the srall data base and the atsence of an

automatic classifier to generate an optimal feature space.




Table 2

Canonic Shape Fourier - Mellin

Feature Comparisons

a. Peak Correlation Values

RECT RECT/2 TRI TRI/2
RECT 1.00 2.95 2.50 g.42 ;|
RECT/2 - 1.09 2.52 9.41 :
TRI - - 1.00 2.98 3
TR1/2 - - - 1.00 %%
b. Squared difference between features. i

RECT RECT/2 TRI TRI/2 |
RECT .000 811 .010 011 E
RECT/2 - .000 .015 .014 5
TRI - - .000 011 |
TRI/2 - - - 000 .

92




¢U BEG

SHIP1 O

- 20 DEG

SHIP1 O

(o)

8 b
H 3
8 s |
Ll pu
2 po
0 IS S|
a. 50. 100. 150. 200. 250. 300.

J -
3 =
G -
‘.
¥} o
0 !lJlLAL'IIIIJ;IILILILILILJ!JJJ_I

g. 50. 10a0. 1580. 200, 250. 300,

RANGE SARMPLES

S-MELLIN FREQUENCY
Ship 1 From @ to 20 Degrees |

Figure 22
93




L e L I T RTINS e o 4

LIt
[@¢]
T

= 3.6 'J,
o
‘ N
s
O
— {
o 9.2 -
=0
g 9.0 L) [N SRR IR TR RS U N A A SR :
g. 50. 100, 150. 200. 250. 200.
RANGE SAMPLES
1.0
s} 0.8
(W]
a
o 0.5 h
(W]
| |
o 0.4
o
' p—
a 0.2
I
3 2 Y
v 0.0 = ——
§ | Q. 50. 100. 150. 200. 250. 300.

S-MELLIN FREQUENCY

Ship 1 From 3@ to 50 Degrees
Figure 23
94




V. CONCLUSIONS

The preprocessor design began by considering a generic
classification system. A distinction was drawn between the
classifier and the preprocessor. The preprocessor is
problem specific. It assists 1in the classification by
extracting a set of features for the <classifier. The
extracted feature space has enhanced natural clustering on
the basis of shape by removing information that was
extraneous for classification. Two useless characteristics
were identified as shifting and scaling. The preprocessor
was designed to remove dependence on these two
characteristics by using the 1nvariant properties of a
Fourier transform followed in series dy a Mellin transform.
The resultiag set of coefficlients are Fourier-Mellia (FM)

features.

A. REVIEW

In Chapter II a Mellin transform was developed using the
conventional digital processing approach which
exponentially warps the domain and then transforms the
spectrum by an FFT, This method is sometimes identified as
a fast Mellin transform (FMT). The wunbounded behavior of
the exponentially warped frequency spectrum was shown to

result ia a fuanction that c¢could naot bve transformed. That

9f
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is, the warped function has no transform because the Mellin
integral is 1indeterrinate at the 1lower 1limit. Error
correcting techniques cannot compensate for the effect
because the error itself cannot be computed in general. The
bound for the error was found and seen to be the envelope

for existing error correction functions.

Chapter III developed some wuseful properties of the
Mellin transform that were used to modify the signal so
that the pitfalls isolated in Chapter II were avoided. This
vas done by modifying the input to the Mellin transform to
always be transformable. To simplify the implereatation and
to control the effects of sampling, a direct Mellin
traasform was used for the developrent of the modifiers.
Several sultable modifiers were determined and tested with
differently scaled 1inputs for which the closed form
solution was known. The direct Mellin algorithm that
produced features closest to the closed form solution was
chosen for use in the preprocessor. With the modifications
in place, the preprocessor was tested and shown to produce
features that were invariant to shifting and scaling. It
was also shown that the features retained enough

information to classify canonic shapes.

Chapter IV discussed what type of information |is

required for classification. Signal structure or shape was

8€




identified as key information. A discussion of what
information is required for classification and a means of
keeping the signal structure 1intact throughout the

preprocessor was advanced, but not empirically verified.

B. FUTURE WORK

The design FM preprocessor does produce a feature space
with enhanced clustering, but problems rerain to ©be
resolved before the full poteatial of the system caa be
realized. There are three extant conditions that detract
from the performance of the implemented preprocessor.
First, the preprocessor is not computationally efficient.
Seccnd, most of the signal structure that should be vital
to classification is obviously lost. And third, a complete
verification of performance has not ©been conducted. The
current preprocessor produces an eahanced feature bdase for
a classifier, but attention to these main weak points will

greatly improve the applied techniques.

1. Efficlent Processing

A direct Mellin transform using N spectral samples
to transform into M Mellin spectral coefficieats requires M
by N multiplications. If only a few coefficients are to be
used then the number of multiplicatioas may be srall. Using

the FMT requires about N{(20+1n(N)) arithmetic operations

W
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for the iaterpolatioa and the FFT. If twenty-five or more
Mellin coefficients are required, the FMT {s faster. The
rodifiers used to prepare the spectrur for the direct
Mellin transform will also work for as FMT, but this should
be demonstrated experimentally. Because the FMT directly
weights the lower numbered samples it may produce more

accurate results as well.

2. Conservation of Information

Chapter Iv discussed the ¢type of information
required for visual pattern recognitioa 12 humans. The
preservation of this information should be a specified
design goal for the preprocessor. The preprocessors built
for this thesls removed much of these vital signal
properies. A mreans was iatroduced to limit or <control the
loss of structural detail by zeroing the fundamental phase
and ad justing each of the reraining complex coefficients to
reconstruct phase relatioaships. This may be done 1ia the
frequency domain as described, or by a similar operation in
the tire domain, shifting the centroid to zero. In either
case, to transform more information about the signal will
effectively increase the sensitivity of the features to
characteristics in the time domain. This increase 1in
sensitivity needs measured to confirm the approach. It 1is

also possible that continued selective zeroling of




coefficients may offer improved performance or robustaess

to the system as a wvhole.

3. Verification

Although the imrroved performance was demonstrated
with respect to ealier FM digital preprocessing, a direct
irprovement factor needs to be established. Time domain
correlation should be used as a measure of original signal
classifiability. This reasure needs to be compared to the
F¥ domaia correlation recorded as Table 2 in Chapter IV.
Next, the preprocessor or an improved version will have to
be married to a <classifier and realistic data used to
evaluate its effect o2 the classificatioa syster. The
preprocessor built was design to be used on-line. An

on=-line classifier needs to be built as well.

The systematic evaluation of ship profiles using ®M
features 1is still a requirement. For several ships, IM
features rmust be singled out and plotted together as a
function of aspect angle. The purposes are to establish a
range of aspect over which classification may be possibdle,
to evaluate changes of structural content as discussed in
section two adbove, and to determine the beam signature as a
classificatioa “node”. Although these purposes assist in
the system design, the third 1is more of an operational

necessity. All ship signatures will degrade to the Dbeam




aspect "node” so that this hypervolume in the feature space
is occupied in common. Therefore the beam condition mrust bde
detected and withheld from ever eatering the classifier.
Nor should beam signatures be used for classifier training.
The beam "a0ode” needs to be determined separate from the
classifier. Initially this information can be plotted to
examine feature ©behavior and confirm the rethodology,
automated methods will quickly follow. These amalysis
functions may never reside in the classification system
ftself, but must de a part of the tools used to develop a

workable classification system.
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APPENCIX A
c !
C R BBV E SR AV VEPRR VRS RS H R R B RBEREARBEBREEERBE X SRR S B :
€ 3 THIS PROGRAN IS A DIGITAL IMPLEMENTATION O *

C ® A FAST FOURIER TEANSFORN POLLORED BY 4 HZLLIN *

¢ * TEANSFORS.  THE DIGITAL INPLENENTATION OF Tig  *

C & BELLIN IS As AN EXPONENTIALLY SAMPLED SPECIEUN 3 ‘
¢ » THEN RUN THROUGH AN FFT AND COBRECTED POR THE * |
¢ ® ERBOR BY ANY ONE OF SEVERAL CORRECTION *

C # SUBROUTINES. CORCTX. * ‘
C BRBESR RN L 2 AREBEEER SRS LSS EREERAARRREERE AR RS SR ES

¢

¢

c RECORDED PLOTS / PLOT NOMSEZ USING RECORD CALLS l
¢ -TINE PUNCTION (CONT)

¢ -SXNPLED TISE PUNCTION / 1

¢ -EFT (CowT) / 2 |
¢ -EXFONENTIALLY sampLED EPT / 2 ,
¢ ~UNIFOEMLY SANPLZD FET |
¢ ~DISCRETE MELLIN PEATURES / 4 ]
¢

¢ BECORDED_PLOTS / PLOT NUMBER USING RECANG CALLS

¢ -TIE rlucTion (CoNT) / 3

c -FFT UNIFORMLY SANPLED' / 2 (MAG & PHASE)

¢ -MELLIN FEATGRES / 3 (ndc°s PHASE)

¢

¢

DIMENSION XREAL (200),XINAG (200) ,XINT (200),T (64
1BET (200) ( )e { ), ( ) T (64),
1scALs = 31
¥0=
N=2#2NQ
NO=7
§=28% Ny
CALL sanmp éx L XIMAG
. CALL RECORD (X iL,xlulc N,ISCALE)
¢ CCMPUTE THE ACTUAL SAMPLE POINTS AS PROVIDED BY THE
¢ SANPLED VIDEO.
NO=5
N=28% 30
CALL SAMP (XREAL,XINMAG
CALL RECORD (XBE iL u&c ¥,ISCALE)
ISCALE = 31
10=7
L=2%2L0
LO 200 I=1,L
IE(I.GT M) ‘Co 10 150
IINT (1) ZXREAL (
9814 )=XIMAG (1)
GO 0208
150 XINT (1) 20,0
pnré Lao.o
200 CCNTINUR
!




CALL PPTI(XINT,PRT,L LU)

CA trréxazxk IINAG, N
310 ¢ REC £AL ﬁAé ISCALE)
¢ EECORD (XINT, “BRT, L. 1SEALE)
ISCALE'S 31
DG 300 I=1
IREAL (I -sb BT (XREAL (I) ®*%24XINAG (I)*%2)
IIMAG (T}=0.
goo CCNTING
¢
¢ CALCULATE THE NEW SAMPLE POINTS AND INTERPOLATE
¢ TC PIND THE EXPONENTIALLY SAMPLED VALUES.
c CALL NUPTS (XINT,M,N)
¢ AFTEE NEW INTERVALS CALCULATED AND STORED TEMPORARILY
¢ IN VECTOR IINT, STORE FOBR LATER PRINTING LN ® VECTOR.
Do 400 Ix1,u
FBT (I) = .0
T(I)=XINT (1)
goo CCNTINUE
¢ WITH THE NEW TIMES IN VECTOR XINT, AND THE CURRENT
¢ SPECTEUM SAMPLES IN VECTCR XREAL, COMPUTE THE NEW
¢ EXPONENTIAL SAMPLES AND ENTER THESE INTO VECTOR
¢ XINT BY USING THE CHOSEN INTERPOLATION METHOD.
¢ PINALLY, RECORD THE PIRST SAMPLE TO BE USED LATER
¢ T0 CORRECT THE MELLIN TRANSFORM POR LOW FREQUENCY
¢ LOST IN THIS EXPONENTIALLY SAMPLED TECHNIQUE.
FQ=XREAL (1)
399  CONTINUE
CaLL INTPZ‘XRELL,N,XIHT M)
bRITBéZ
401 FORMA jf
CALL SHAX'(XINT,PRT,H4,SCALE)
0O 410 I=1,M
XRBAL£I)= x§nT (1)
LINT (1) SSCALE ' XINT (D)
XI¥AG (1) =0
WRITE (2 1sgr41) XINT (I)
315 PCRMA . 5)
410  CONTLN
¢ SUBMIT THESE EXPONENTIALLY SAMPLED VALUES TO THE
¢ FINAL PPT BLO
. CALL FPT(XREAL,XINMAG,H,NU)
¢ APPLY THE CORRECTION T®RM, FIND THE MAGNITUDE
¢ OP THE NOW SCALE AND TIME INVARIENT FEATURES.
ccc L COHCT] (XREAL,XINAG,H,EQ

CAL
CALL CORCTZ (XREAL,XIMAG, Oi
CALL BECORD XRBAL XIHAG,H ISCALE)
15
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t.tttta‘tt*a"tttttttttttttttttttttttttttt
® SUBROUTINE PFT, GIVEN THE COMPLE =
: SANMPLES 2*‘HU=Nb§IHIL BTOBH THB :

COBPPI CIBNTS
"» “"# 2% t'"*‘.t#t###‘#t‘t SREEASRRERER S

SUBROUTINE FFT XREAL XI84G, N ,NT) {
DIMENSION XBEAL(N),X HAG(Nf '
<=N/2 !
N01=NO- j
k=0 !
DG 100 L
102 pO_101 T

0NONON

z
-

#C-XBREAL (K 1N2) *S

L’K1N% SC+IIMAG (K1N2) &5
G(K1N
K1)-TREAL
~TIMAG

K1

REAL
XINAG x1f+mxuxs
101 K=K+

100 2=l2§2‘ 1
=

i zaxnxrn(x—i +1 . ;
1 IF(I.LE.K cb r
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*
.
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§ up o« VECTOR <Y> IS INPUT »
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FCN IS THE INTERPOLATION RULE.
PUNCTION PCNJX ¢TeI)
DIMENSION
IX = FLOAT (1)
CCMPUTE THE COEFFICIENTS.
o* X(Z) X¢1)

- - ‘ #
E = 1 1 ;- X‘1%&*‘2. 9358 5 A TX
CCMPUTE THE INTERPOLATEL VALUE.
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# SUBROUTINE INTERP USES l LAGRANGE THIRD
* CEDER METHOL OR_A CONLC ORDER POLYNONIAL
% TC COMPUTE IHE INPUT SABPLE WAVEFORMN.

MPLES

AMPLES

*

.

*

L d
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c
< FUNCTION YLIN MAKES A LINEAR INTERPOLATION.
¢

PUNCTION !LIBJXQ !9)

CIMENSION

IPf!P.LT o.§ 50

5%13§§“‘ )+ p-(xu(s) X4 (2))
50 YIIN=X4 (2) =YP*® (X4 (1) -X6 (2))

RETURN

END
c
<
¢ FUNCTION YLAGR COMPUTES THE LAGRANGE MULTIPLIEES
¢ AND MAKES THE INTERPOLATION FOR A CHOSEN OPFSET
¢ FROM THE CENTRAL SAMPLE X4 (2)
¢

PUNCTION YLAGE (X4,YE)

DINENSION XU (4)

Coi1=- 5!2- ) ${12=2) /6.0

gg?(zrtt PRI RO g)/z 0

b £ -

CE2=YE# {2ta2- re.

YIAGR=C 1~xu41)oc0txa(z)0cp1txu(3)ocpztxa(a)

BETURN
. END
C SRS R BRBE LSRR BER R LSRR R R EREREER BB ERRBRE R R R R EERERE R
¢ * SUBROUTINE NUPTS CALCULATES THE M EXPONENTIAL SAMPLE *
¢ % ECINTS FROM THE N UNIPORM SAMPLES OF THE EXLSTING *
C # SPECTRUM IN PREPARATION FOR AN INTERPOLATION. THIS #
¢ » EXPONENTIALLY SAMPLED SET OF POINTS ARE STORED IN b
¢ * THE INPOT VECTOR X. *
C SRS YBER SR BB R B REE RNIE G R 0 Wy 3w 2 3 e e ook 155 24 350 30x u e ofe o 2 2 a2t e
C

SUBROUTINE NUPTS (X, B, H)

DIMENSION X:(156)

UN=FLCAT (N) /2.0 + 1.0

EM=PLCAT {8} %1.0

DELZ=LOG (UN)./EN

DO 100 I=1,

SISPLOAT§I£-1.0

VALUE = SIMDELZ

I (L) =EXE (VALUE)
100 CONTINUE

BETORN

END
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* THIS IS A STUB PROVIDING A TEST SKIN RETUR *
* Ic SISULATB A SKI¥ RETUBRN. NORMALLY THIS SUBROUTIHE :

WILL ACTUALLY SANMPLE A SKIN BETURN,
:numu-u« SRSESERRES AR AR R REERASEERISRRAARRRBSSEURREES RS

SUBROUTINE SAMP (XR, XI,N)
DINENSTIGON XB(N) ,XI N}

DESIGNATE SCALE FACTOR AND UNSCALED TIME SHIFT.
SCALE = 16, / 32.

eI NN
(21 By T o)
-—b

HIFT = 0.0 7 %2
CALE = 1.0/SCALZ

gs .5 + SAIPT

a 100 I=1,¥

Ri =0,

I "'0.

CALCULATE THE TIME OF THE SAMPLE.
SK= (FLOAT (I)-1.0) /JPLOAT (N1)
EUILLC THE TEST SKIN RETURN.

IN THIS (C Z-PBRL CASE A DOUBLE PERINID.
TSCALE = (SK-TO)*sC

IWPY = 1

IF{IHF! «BEQ. 1) GO TO 10

IP(IWFNM .EQ. 2) GO TO 50

R =8, / 3..

IP (ISCALE .LT. -W) GO TC 100

IF (TSCALE .GT. +¥ GO TO 100

IPF {(TSCALE .LT. TO 20

IR ( g = éTO - TSCA E) * 10 0

GO TO 10

XB(I% =W * 10.0 - (TSCALE - T0) * 10.0
GO _TO0 100

CCNTINUE

THE POLLOWING WAVE FORM IS A SSUAEE WAVE 16 SAMPLES
WIDE CENTERED AROUNL THE SIXTEENTH SAMPLE.
SCALING AND SHIFTING DONE ABOVE WILL EFFECT THE
WAVEFCERM ACCORDINGLY.

TSCALE = (SK-TO)®SCALE

EDGE = 1. / 4.

IF (TSCALE .LT. -EDGE) GC TO 100

IP (TSCALE .GT. +EDGE) GC TO 100

XB‘ & = 1.0

CCNTINUE

RETURN

END
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100
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90
100

AR ESESL LSRR EE RSB EE SRR LS IREEEEE SR RRF KRS R RERE
THIS CORRECTION SUBEROUTINE USES ONE OF

THE SIMPLER CORRECTIONS FOR THE MELLIN
TBANSFORM. THE CORBECTICN IS A PURE IMAGINARY.

*
*
.
CORRECTION = -FO/OMEGA :
fﬂ A MODIPICATION IS MADE TO THE ENTIR :

»

NSFOBM BY A MULTIPLICATION BY OMEGA.
BREAERUE SRR EREERPERESFERBEREERIEEERR BB R RRRE R

L E 2 XX XX X

TH
IR
L b o

*
%*

SUBROUTINE CORCT1£XB,XI,N,P0)
CIMENSICN XR(N) ,X1(N)

DO 100 I=1,N
OMEGA = PLOAT(I) - 1.

X8 1) = xa;:) * ouzsa
IF(I .EQ. TO

I(I) 1) éxI(z) - ?O/OHEGA) * OMEGA
11(1) 1%

CCNTINUR

RETURN

END

AR SR AR BB EREEERERERBREE SRR RESE X R BER R EREEEEREEEEEEEE R

* THIS CORRECTION APPLIES THE MORE COMPLECATED
¢ EXPRESSIO
&GaateTton = FO/2 + JCOT (FO/OMEGA)

»
L d
»
t‘égg THEN BODIPIES THE ENTIRE 355§§§9§§.§¥¢1 OMEGA

]
3
L ]
*®
BRBERREREER KRR R B R R ERBERE SREEERRRR

SUBROUTINE CORCT2 (XR,XI,N,FQ)
DIMENSICN XE(N) ,XI (X)

Lo 100 I=1,N
CHEEGA = FLOAT(I) - 1.

XR(I) = (XB(I) + FO/2.) * ONMEGA

IF I .EQ. 1)G0 TO 90

GO I) = AXI(I) - (FO/2.)%COTAN (OMEGA) ) *OMEGA
XI(I) = POs2.

CONTINOE

RETURN
END
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APPENDIX B

SRR NRRGBE RS ERRRRRERRENE RS IRREERE LS PR R SR RERER R SRR Rp
3 THIS PROGRAM, POUBIER DIRECT MELLIN, TAKES AN INRUT %
* WAVEFORM rnc& LOGICAL DEVICE 2, PERPORMS AN PP *
s JOILORED EY A AoHT COTDUTING THE FEASURES 10 LOGICAL #
s DEVICE 3 POR LATER PLOTTING BY MELPLT. THE MAJOR *
* DATA STRUC BROUTINES ABE LISTZD BELOW .
* o ABANCE. "THE SUBROUTINES ARE .
. Il WHERBE THEY ARE ACTUALLY .
% »

RRARBRERE AR SRS XL REEEREBEREEERE S

HAJOB DATA STRUCTURES:
WFM> ~ THE INPUT WAVEFORM AREALL
<IFM> - THE MELLIN TRANSFOR éco PLEI)
<CEHI> - REAL MELLIN COEFFICIEN
<SPHI> - IMAGINARY MELLIN COEFFICIENTS
<STAND> - AN 3¥g%§ sann FOR LATER COMPARISON
<PET> - AN MRRAY NORMALLY OSED TO HOLD REAL
DATA TEMPORILY. A WORK SPACE.
<IIT> - X A1IS TITLS FOR PLOTTLNG
<IYT> - Y aXIs TITLE FPOR PLOTTING
<KEY> - NUMBER OF PLOT THIS GRAPH
suaaoumxuzs-

VE - REZADS AN ARRAY PROM LOGICAL DEVICE 2,
AND FILLS ZEROS TO MAKE A TOTAL OF 256
SAMPLES. THE OUTPUT IS IN <WFMD>.

FPT - AN FPT BLOCCK

COEF - COMPUTES THE MELLIN TRANSPORM SAMPLE
WEIGHTS. THESE ARE COMPLEX
NUMBERS WHOSE REAL AND IMAGINARY
PARTS ARE STORED IN <CPHI> AND
<SPHI> RESPECTIVELY.

DMTM - APPLIES A MODIPIED DIBECT MELLIN
THEANSFORM TO AN INPUT WAVEFORM
PUTTING THE OUTPUT IN <XFMD.
THE ALGORITHN IS BASED ON A FIRST
BACKWARD DIFPERENCE.

SMT - APPLIES A MODIFIED MELLIN TRANSPORM
BASED ON A SECOND DIFFERENCE.

SMNT2 - APPLIES A4 MODIFIED MELLIN TRANSPORM
DIFFERENT THAN SMT, BUT ALSO BASED
ON THE SECOND DIFFERENCE.

CDMT - APPLIES A MODIFIED uELLIu TRANSFORN
JUST AS DMTM ABO EXCEPT THAT THE
CENTRAL nxrrzazucz 1S USED.

110



(glelgislelelslalsialslsislalnlelelalelalaly]

SIME - APPLIES A MODIFIED MELLIN TRANSFORN
USING A BACKWARD DIFPERZENCE AS 1IN
DMTH, EXCEPT THAT THE INTEGRATION
IS Bf IMESON'S RULE INSTEAD OF THE
TRAP ZOI AL RULE.

XAB - TAKES THE HAGNITUDE OF THE COMPLEX

TRANSFORM <XPFPM> AND PUTS THE
MANITODE IN A PECIPIED VECTOR.
STON - NORMALIZES A VECTOR BY ITS
MAGNITUDZ AND WRITES IT TOQ
LOGICAL DEVICE 3 WITH A TITLE
FROM LOGICAL DEVICE &.
HOLD - LOADS OBRE VECTOR IXNTO ANOTHER
ALTER - CHANGES <WFM4> BY SCALE 5/0R SHIFT
AND OUTPUTS TO A SPECIFIED ARBAY
INTP3 - A SECOND ORDER SPLINE INTERPOLATION.
CFORM ~ PROVIDES TWO CLOSED FORM SOLUTIOANS
PCR VERIPYING THE MELLIN ALGORITHAS.
TITLE - ENTITLES THE PLOTS ON THE BASIS OF
THE CALLING PROGRAAM.

- pmet b

r i e




C SC THE MAIN PROGRAM STARTS!

TR T Y R R A S A P TR I

256,
11xr(1o;,114(1ol kﬁ ( ) ( )21,
DATA IF/* FPRY,YEQUE',*NCY °*,° ', 'y

EI = 3.141592654
C HOW MANY WAVEFORMS ARE TC BE TRANSFORMED?

BEAD (2, 10) NUMWFY
10 PORMAT (I4

C NTMS IS THE NUMBER OF TIME SAMPLES (INCLUDING
C ANY ZERO FILLING). IT IS A _POWEBR OF TWO
C FCR THE CONVENIENCE OF THE PPT.
C MPTS IS THE NUHBBB CF SAMPLES INPUT TO THE
C MELLIN TR!NSPOR BLOCK. THE COEFFICIENTS
C ARE COMPUTEL u.
NU = 8
NINS = 28%
MPTS = NTMS/2
50 ECRMAT Iu%
NCOZF = NTMS
CALL COEPF (NCOEP,MPTS)
g SET UP THE LOOP FOR THE NUMBER QF WAVEFORMS

TC BE PROCESSED
DG 500 IWAVE=1, NUMWEN

o GET THE NEXT INPUT WAVEFORM.
CALL WAVE (WFM,NTNMS)

ZERO THE <STAND> VECIOR TO BE USED AS THE
IMAGINARY PART OF THE NTMS TIME SAMPLES.
DO 100_1I=1, NTH

SIANDJIB ='Q.0

100 CONTINU

CALL STCU;UP! o NTMS)

nn

C TAKE T

CALL IITLBé g

CALL FPT (WFM,STAND, NTMS,NG)
C TAKE THE MAGNITUDE AND EUT IT INTC THE COMMON
C WAVEFORN <HPH>.

D
aruj L 4 %ttz + STAND(I)*%2
WENM = SQB FN(I))

200 CON
CALL STOU(U!! NTAMS)

o TAKE THE MELLIN TRANSFORM OF THIS SPECTRUM
¢ USING THE PIRST HALF OF THE FPT SAMPLES
¢ OTHERBISE KNOWN S MPTS=NTHS/2. ~THESE frE THE
¢ CHLY UNIQUE VALUES
cALL o1l (irx aprs NCOE?)
ALL XAB(BRT, HCO

¢ Erf
CALL STC (pxi $S3E )




c
c
¢ NEXT CALL THE SECONC ORLER RULE D
¢ SUBROUTINES. BOTH COMPUTE THE MELLIN
¢ USING THE SECOND DIFFERENCE APPROXIMATION
¢ INSTEAD OF THE PIRST DIFFERENCE APPROXIMATION
¢ ABOVE. OTHERWISE THE APFROACH IS THE SAME.
¢
CALL SAT uru,uprs NCOEF)
CALL XAB ‘
CALL STC (pni nco )

CALL SMT2 WEN MPTS, NCOEF)
CALL XAB(BRT,fcCO %
CALL STGC (paf S20E )

o CALL CDBT WHICH USES THE CENTRAL CIIFERENCE
c RULE FOR APFROXIMATING THE TRANSFPORN.
CALL CDNT (WPM, aprs NCOEF)
CALL IAB pam ficoE %
CALL STCWd (pEf,HCOEF)
C CALL SIMP WHICH COMEUTES THE MELLIN TRANSPORM
C USING THE FIRST DIFFERENCE ALGORITHM AND
¢ SINPSON'S RULE TO COMPUTE THE MODIFIED
¢ MELLIN TRANSFORM.
CALL SINP aru nprs NCOEF)
CALL XAB ficos rg
CALL STC & NCOE
c END THE raaussonu LOOP. THE TRANSFORM HAS BEEN
C CUTPUT TO LOGICAL DEVICE 3 AND PREPARED WITH {
¢ TITLE INPORMATION PROVIDED BY LOGICAL DEVICE 2
¢ POS PLOTTING WITH PROGRAM MELPLT PORTRAN.
¢ STAY IN THE LOOP IP MORE WAVEFORMS ARE AVAILABLE.
500 CONTINUE ,

CALL CFORH (PRT,NCOEF)
CALL CFORN(FRT,NCOEF)

STOP
END

e
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c

c PRSP RP NS SSRE RS EPE REEEEE R RRREBEEERSEEREEEE LB SEEE S
c = gaz COEF SUBROUTINE COMBUTES THE MELLIN

C ® COEPFICIENTS IN TO COMMCN ARRAYS CPHI AND *
¢ * SPHI THAT BEPRESENT THE REAL AND IMAGINARY .
C ® EARTS RESPECTIVELY. THE TERMS ARE COMPUTED *
C = BY THE FORMOLA: *
c =» PHI(I,J) = J*#S , WHERE S = A NORMALIZED .
c = £SCRETE RADIAN PREQUENCY. *
c AR YRR SRR SE SRR B ERE R R BB SR e R Rpy RE Ry P ER RE R gy g R
c

SUBROUTINE COEF (NCOE®,NPTS)
COMNON xruézse e uf (256, 128) , SPHI (256, 128) ,P1I,
11:1*10) IY {1o£ gy
co 100 § = 1,NCOEF
BI = rLonwéxi
CHEGA = 2. PI * BRI / 36.
DO 200 J = 1,NPTS
RJ = FLOAT(Jé
CPRI (I,Jd) = COS(OMEGA * ALOG (RJ
SEHI (I1,J) = SIN (OMEGA * ALOG (BJ
200 CONTINOE
100 CONTINUE
3 EETURN
} END
(=Y
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BARSREREEE SR L SRS EEE R EERE SRR EERR R R SRS SRS ERRRER R RS
IHE DATH SUBROUTINE PEREORMS A DESCRETE MELLIN
TRANSEORN ON THE AREAI WrM. THE FOR
FoR QN HELLId rasquz LUE
(I)=sSUM(K=1 TO NEIS) (VPN (I+1)-ﬁru(x))txus

COMPONENTS CF K**S ARE COMPUTED PRIOR
MTM AND STORED IN THE COMMOMN ARRAXYS
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MENSIOHE SAMP ( prsg 5 I;
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SR SRS BN BE S AR XL BN R BE BB Y ERERERESERERE R EREESEESEERE S
*

SHMT IS A SUBROUTINE THAT COMPUTES A NU!BBICAL

APPROXIMATICN TO THE MELLIN TRANSPORM AS *
CMTM ABGVE. SMT USES A TRAPAZOIDAL APPROXINATION *
TC COMPUTE THE TRANSFORM, BUT USES THE SAME .
ggEEsgg%ﬁNT MATRIXES (CPHI) AND <SPHI> CONTAINED :
RIPBERBEREEEREERBEBEBEEE R EREREERES LR R R RE R EERREEEE SR
SUBROUTINE SMT (SAMP, VPTS NCOEF)
CINENSICN SAMP uprsg
CCMMON xrnizse k ﬁx(‘ss 128) , SPHI (256, 128) ,PI,
Ixr{1ob,11 é1of, gy
CATA ID/'S-ME',fLLIN',' FRE','QUEN','CY ¢/
CALL TITLE (ID)
INITIALIZE THE INPUT ARRAY AND COMPUTE
THE LOOP CONSTANTS.
§1 = NPTS = 1
N2 = N1 = 1
SET UP THE TRANSFORM LOCE. THE OUTER LOOP
SETS UP THE COEPPIECIENTS WHILE THE INNER
LOOP COMPUIES THE SOM WHICH ARZ THE
CCEPPICIENTS.
DO 200 J = 1,NCOEF
XFM (J,1) = Q.0
XEM (322} = Q.0
o 108° = 1,82
10 = I
I1 =1+ 1
12=1I+2
PELTA = SAugéIO) - 2.% sanp(x1h + saupfxz)
XFE(J,1) = XPN(J,1) + DELTA®CPHI (J,I)*
SEM{J02) = XFM{J.2) + DELTA®SPHI {J.I)*I
CCNTIfU
XPM (3J,1 = XPM(Je1) / (FLOAT (J)*PI/18.
xra(a,z} = XPH J.zf 7 irnoxrfa**px/1e.f
= XPH(J,1) / SCRT(1+(PLOAT (J)*PI/18.)%#2)
= XPM (J,2) / SCRT(1+(FLOAT (J)*PI/18.) *#2)
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BEMOVE THE COLOR
;3'%
1fio

BETURN

END

IFN
IEM
CCN

200




QNnONONONOOONNND

(2]g]

200

TSR PPE R RN SRR RPER SRR RS R B SR BRERERRE R ERERRRRB R R R BRRERERE

* THE CDMT SUBROUTINE FERFORMS A DESCRETE MELLIN *
& TRANSFOBRM GN THE COMMON ARRAY WFM. THE FORMULA *
& FOR ONE MELLIN PREQUENCY VALUE IS: »
» XPH(I)=SUN(K=1 TO NPTS) (WFH (I+1)-WEM (I-1))%K*es *
3 THE COMPLEX COMPONENTS OF K*®5 ARE COMPOTED PEIOR %
* T0 CALLING AND STORED IN THE COMMON ARRAYS *
e Rk EN G e s A O NE  IHAGINARY PARTS *
# BESPECTIVELY. THE CENTRAL DIFPERENCE IS USED. P
#.."““*"l*"*‘***'.‘*#“**“"**#“#**#.**"*"““
SUBROUTINE CDMT (H, usrs NCOEF)
DIMENSION H(NPTS),ID(S)
COMMON xtué 6 scy 1'(256,128) ,SPHI (256, 128) ,PI,
11xr‘10 J f,
DATA I 4 E',YLLIN',* FRE®,'QUEN','CY '/
CALL TITLE (ID)
SET UP DERIVATIVE OF INPOUT VECTOR <H(I)>
IDENTIPIED HERE AS <GD. .
NG = NPTS - 1
DO 200 J = 1, NCOEF
PN (J,1) = Q.0
IFM{302) = 0.0
OMEGA = PLCAT(J) * PI / 18.
LC 100 I = 1,86
INt = I
IP1 =T + 2
DH = (H(IP1) - H(IMT)) / 2.
COMPUTE THE J-TH COEPPICIENTS BY THE SUM.
XFN(J,1) = IPM(J,1) + DH ® CPHI (J,I
XPE{J,2) = XPA(J,2) + DB * SPHI (J,I
CCNTINOE
ccxoa =1,
IFN = HiJ,1; * COLOR
PR (J = IPH (3.2) » COLOR
conrrnnz
BETURN
END
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® THIS SUBROUTINE USES SIMPSON'S RULE TO

MODIFIED MELLIN TRANSFORA.

?RE%U
PFT,
221

L 2t

TS, NCOEF)

',' FRE®,

LC 200 I=1,N1
I8t = I
I0=1+1I

IF (FsSINP
-“o

.GT. 3.) GO TC 67

INnN1)

NUEB
DELTA = B(Ig*a D osiup »
{J 2; + PSINP *

i" = XPH

CCNTINDE

CONTINUE
SETURN
END

APPROXIMATE
THE MODIFICATION

NCY TIMES THE FREQUENCY DERIVATIVE OF pe
RERERERBR AR EEE R ERREERERRRERRE R AR ERRERE SR EE R K

Ik256,128),SPHI(256,128),PI,
YQUEN?*,

'"IcY v/

DEL * C
DEL *

J,IN1
J I

»
P
*
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* THE XAB SUEBOUTINE TAKES ng HAGNITUDE OF THE »
% COMMON COMEFLEX ARRAY XFM 2) AND PLACES *

anannnnnn

% THESE VALUES IN OUTFUT ¥ e o8 kxhie> Eos TarER *
#.E SN RPEBECRERE RS IEEBEREEEEER RS S SR TR PGB R R R
SUBROUTINE xlaixuas ,NPTS)
DIMENSION XNAG s
CCHMON XPM (238 ,2)  CPHI (256, 128) , SPHI (256, 128) , PI,
uxr*w)f T; £y
DS 12 e BT ek (1, 1) #2exEn (T, 2 Ty
100 CONT]‘.L QRT { {I,1) (I,2) )
EETURN
END
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¢
C SR RENR SR SRS SSRGS EBE L BN BS YRS RIS EEEEE S S ESREREEEEE
¢ = THE STON SUBROUTINE STORES THE INPUT ABRAY PRT (NPTS) *
¢ & INTO THE LOGICAL DEVICE 2 POR LATER USE IN PLOMPING. *
cC = NP%O! NUMBERS THE ELOTS POR LATER IDENTIFICETION .
¢ % AND A PLOT TITLE FOR THE MELLIN FREQUENCY IS ADDED #
C ® PCR CONVENIENCE. *
c = THE MODULOS OF THE *
C * TEANSFORM TAKEN, SCALED TO UNIT MAGNITUDE, AND .
¢ * COTPUT TO LOGICAL UNIT 2. *
C =» INPOT: PRT - TO BE SCALED TO 1 AND WRITTEN »
c = TC LOGICAL UNIT 2. *
C = NPLOT - THE NUMBER OF THE PLOT *
C = KEY - NUMBER OF CURVE THIS PLOT *
Cc RPN E RN SEEE SRR SRS RS A SRR E RN RS EE SR EEEREEEEEEER R
¢

SUBBOUTINE STOW (PRT,NPTS)

DIMENSICN PRI (NETS)

COMMON XPM (2 ,zk PHI (256, 128) , SPHI (256, 128) ,PI,

1IXT (10) ,IYT (1C) ,KEY

WRITE (3,13) BPTS

aaxrzé3.13 KEY
CKK IF (KEY .NE. 1)GO0 TC 12
¢ WRITE AXIS LABELS

®RITE (3,10) (IXT(I) ,I=1,10 ,

RRITE(3.10) (TYT(I) s I=1.10 |
10 roRMAT (Y014).
12 NELOT = NPLOT + 1

BPET = 0.0
13 FORNAT (14)

DO 100 I=1,NPTS

IF 4paré1) .GT. BPRT) BERT = PRT(I)
100  CCNTINU

IF 5393& .LT. .00001) BEBRT = 1.

DO 200 I=1,HPTS .

Enr(xi = PRT(I) / BERT~

T =F OLTJI&

naxrnéa 2,§ PRT (I)
20 FORMA 6&(3 £9.5))
200 CCNTINOE

BETORN

END
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R AL PR ABRBIREBEARE R RES LB RBE SRR ERSEREEEEE R ERE
® THE HCLD SUBROUTINE TAKES THE INPUT FILE *
% <FILIN> AND STORES IT IN THE OUTPUT FILE *
* <FILQUT> FOR TEBPOBAR! STORAGE. THE FILE :

% CFILIN> REMAINS UNCHANGEL,
t‘#"tﬁ#*.‘*#‘.*##.*#.‘t“t#“.t.t#.ttt“#‘#*‘.

OONONONHONONO

SUBROUTINE HOLD (FILIN,FPILQUT,NPTS ;
CIMENSION FILIN (NPTS), FILOUT( PTsS

DO 10C I = 1,NPTS
PILOUTJI} = PILIN(I)
100 CCHNTIN

20BN BB R AR RS LR LR R ARER B EBRERBREEREREREREEREXERBEBER
® THE ALTER SUBBROUTINE WILL ALTER THE COhHOH ARRAY »
* <WFM> AS SPECIFIED BY THE INPUT VARIABLE *
® <SCALE> AND <SHIFT>. THE ALTERED WFHM IS OUIPUT *
* IN THE VECTOR <ALI>. *
CRSEES SR RNREEBEEBRREREERE ARRE R ERE PR PR KR BERERERRER PSR R

olglelslplelnlale

SUBROUTINE ALTER (LT, P, SCALE, SHIFT, NDTS)
DIMENSION ALT (NPTS) aru;u9155 TOLD 81 ruzn(zse)
HON XP Zkﬁ £a1 (256,128) ,sp 1(2 §,128) ,PI,

10 514438
{ o’£=1 Jp
D(I) = FLO f

g I - TOLD( ) / SCALE + SHIPT
% rurpa(nru TOLD,ALT ,THEW ,NPTS)

1

100

mIOORRCIHO
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OHmmte Hx
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“““.“‘ .“‘“‘““t".‘.“..“‘.“““.‘t BRERBRR PGSRk
» NTP3 IS SECOMND ORDER INTBRPOLIIION BASED ON A »
* ECLIHOHIAL EQUATIUG TO_ FIBST AND SECOND DERIVLTIVES *
¢ APPROXINATEL NTRAL DI?FB BNCES. THE INPUT *
*  VECTOR <XO> HAS OLD SAMELES AT TIMES IN <TO>. THE %
® NEW SAMPLE TIMES ARE INPUT THROUGH ARRAY <TN> AND *
* TED SAMPLES AT THESE TIMES ABE QUTPUT IN *
» T IN THE VECTOR <XN> AND <WFM> »
 J #’“‘."“”‘.“‘.*“‘*“‘*t"”t“#*.*““‘

AnOHNNOOONOONHO

CHOSE THE <IO> SLHPLB TIME CLOSES TO THE WARPED
TIME HELD IN <TN>
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C
C
C
C

0no

onon

EC¥N IS THE INTERPOLATION RULE.

PUNCTION PCH(X,T0,TH)
DIMENSION X (3)

COMPUTE THE COEFFICIENTS.

A= (X(H) - 2.% X(2) ¢ X(1)) / 2,
ERHLRR I £ AR

COMPUTE THE INTERPOLATED VALUE.

FCN = A ® (TN%#*2) + 3 % TN ¢+ C
EEEUBN
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CCHMON XFY %?8 2) ,CPHI (256, 128) ,SPHI (256,128) ,PI,

SUBROUTINE CFORM(CF,NCOEF)
(
1IXT(10) ,IIT

DIMENSICN CE (NCOEP)
+
QR
=
by
I
i
)
CALL STOW (CP,NCOEF)

BETURN
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¢ » GENERATE THE FEATURE SPACE. *
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%23522%55‘:%““ (I2)

COMMON 2§6 2k C2HI (256, 128) , SPHI (256, 128) ,PI,

1IIT(10) o1 e £y

ggr go }ﬁ(z)

=

100 contrhoe

EETURN

END
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